Document Type


Publication Date



Ras homolog enriched in brain (RHEB1) is a member within the superfamily of GTP-binding proteins encoded by the RAS oncogenes. RHEB1 is located at the crossroad of several important pathways including the insulin-signaling pathways and thus plays an important role in different physiological processes. To understand better the physiological relevance of RHEB1 protein, the expres-sion pattern of RHEB1 was analyzed in both embryonic (at E3.5–E16.5) and adult (1-month old) mice. RHEB1 immu-nostaining and X-gal staining were used for wild-type and Rheb1 gene trap mutant mice, respectively. These inde-pendent methods revealed similar RHEB1 expression pat-terns during both embryonic and postnatal developments. Ubiquitous uniform RHEB1/β-gal and/or RHEB1 expres-sion was seen in preimplantation embryos at E3.5 and post-implantation embryos up to E12.5. Between stages E13.5 and E16.5, RHEB1 expression levels became complex: In particular, strong expression was identified in neural tis-sues, including the neuroepithelial layer of the mesenceph-alon, telencephalon, and neural tube of CNS and dorsal root ganglia. In addition, strong expression was seen in certain peripheral tissues including heart, intestine, muscle, and urinary bladder. Postnatal mice have broad spatial RHEB1 expression in different regions of the cerebral cortex, sub-cortical regions (including hippocampus), olfactory bulb, medulla oblongata, and cerebellum (particularly in Purkinje cells). Significant RHEB1 expression was also viewed in internal organs including the heart, intestine, urinary blad-der, and muscle. Moreover, adult animals have complex tis-sue- and organ-specific RHEB1 expression patterns with different intensities observed throughout postnatal develop-ment. Its expression level is in general comparable in CNS and other organs of mouse. Thus, the expression pattern of RHEB1 suggests that it likely plays a ubiquitous role in the development of the early embryo with more tissue-specific roles in later development.


Originally published in Histochemistry and Cell Biology, May 2016, Volume 145, Issue 5, pp 561-574.