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Specialized System Identification for Parafoil and Payload Systems

Michael Ward* and Mark Costello®
Georgia Institute of Technology, Atlanta, Georgia 30332

and

Nathan Slegers*
University of Alabama in Huntsville, Huntsville, Alabama 35899

There are a number of peculiar aspects to parafoil and payload systems that make it difficult to apply conventional
system identification procedures used for aerospace systems. Parafoil and payload systems are unique because
typically there is very little sensor information available, the sensors that are available are separated from the canopy
by a complex network of flexible rigging, the systems are very sensitive to wind and turbulence, the systems exhibit a
number of nonlinear behaviors, and the systems exhibit a high degree of variability from flight to flight. The current
work describes a robust system identification procedure developed to address the specific difficulties posed by
airdrop systems. By employing a two-phase approach that separately considers atmospheric winds estimation and
aerodynamic coefficient estimation, a nonlinear, 6-degree-of-freedom dynamic simulation model is generated using
only Global Positioning System data from the flight test. The key to this approach is the use of a simplified
aerodynamic representation of the canopy, which requires identification of only the steady-state response to control
input to completely define the dynamic model. The proposed procedure is demonstrated by creating a simulation
model using Global Positioning System data from actual flight tests. To validate the procedure, the dynamic response
of the simulation model is then compared to inertial measurement unit data that were not used in any way to develop

the simulation model, with excellent results.

Nomenclature

A,B,C = Lamb’s coefficients for apparent mass, kg

b = canopy span, m

d = canopy arc radius, m

1] = identity matrix

[I7] = total system inertia matrix, kg - m?

L,M,N components of moment vector in the body reference
frame, N - m

m = total system mass, kg

P,0,R = Lamb’s coefficients for apparent inertia, kg - m?

p.q,r = angular velocity components in the body reference
frame, rad/s

D, q,7 = angular velocity components in the canopy
reference frame, rad/s

S = aerodynamic reference area, m>

[SB] skew symmetric cross product operator for angular
velocity expressed in frame B, rad/s

[S3.] = skew symmetric cross product operator for distance
vector from system x to y in frame b, m

Ty = transformation matrix from body frame to ith
canopy element frame

T = transformation matrix from inertial frame to body
frame

u,v,w = velocity components of mass center in the body
reference frame, m/s

u,v,w = velocity components with respect to the air, m/s

X,Y,Z = components of force in the body reference frame, N
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Associate Fellow AIAA.
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of Mechanical and Aerospace

X, v, 2 = inertial positions of the system mass center, m
B = sideslip angle, rad
A = canopy arc angular span, rad
8 = dimensionless control deflection
o, 0, = Euler roll, pitch, and yaw angles, rad
X = azimuth angle (course over ground), rad
Subscripts
A = aerodynamic
B = body frame
C = canopy
i = ith element of the canopy
P = payload
w = weight
I. Introduction

ODERN engineering of airdrop systems leans heavily on

flight dynamic modeling and simulation to predict a multitude
of drop events virtually so that guidance, navigation, and control
(GNC) software can be developed and tested in a cost efficient
manner. For the GNC development effort to be successful,
reasonably accurate dynamic models that exhibit similar nonlinear
behaviors to the actual airdrop systems are required. These models
are obtained by performing system identification on flight-test data of
the system under development.

The traditional aerodynamic model used for dynamic simulation
of aircraft is created using a linearized representation of the system
dynamics near trimmed flight [1]. The main difficulty with this
representation is the need to identify a large number of aerodynamic
coefficients. The coefficients are often correlated with one another
and a large number of them can typically be neglected, though the
particular coefficients that can be neglected may vary from aircraft to
aircraft. The problem is difficult enough for fixed wing aircraft and
rotorcraft, but it becomes even more difficult for airdrop systems. The
primary differences that cause these difficulties are the limited
number of control channels available to excite the system dynamics
(the only means of control typically used on a parafoil is differential
or symmetric deflection of the trailing edge), the sensitivity of these
systems to wind (due to low flight speed and low mass to volume



ratios), and the limited amount and quality of available sensor data
(due to the typical constraint that sensors must be confined to the
payload which is separated from the canopy by a complex network of
flexible rigging).

A variety of methods have been developed for air vehicle system
identification [2,3]. The two methods that are best suited to the
current problem are the output error method (OEM), which is the
most common method for parameter identification from noisy
measurements, and identification through an extended Kalman filter,
which is commonly used when there is both measurement and
process noise. These two methods can also be combined to form the
filter error method.

A number of efforts have applied aerodynamic parameter
identification to airdrop systems [4—11]. Jann et al. describe the
development of a highly instrumented parafoil and payload research
platform, ALEX, incorporating a Global Positioning System (GPS)
receiver, magnetometers, rate gyros, accelerometers, air data probes,
and video cameras to address the problem of generating enough data
for system identification [4]. With this system, they performed an
extensive investigation into the problem of aerodynamic parameter
identification for parafoil and payload systems [5-7]. Their initial
approach was to develop 3- and 4-degree-of-freedom (DOF) models
(the extra DOF was added to account for significant bank angles).
These models required a small number of coefficients to be identified
and good results were obtained [5]. Efforts to identify the extra
coefficients needed for a 6-DOF model were more difficult, and a
creative approach to generating the coefficients by applying lifting
line theory to an arc anhedral wing was used to generate initial
estimates of all of the parameters as well as approximate rela-
tionships for correlated coefficients [6]. Finally, an 8-DOF model
was developed incorporating the relative motion of the payload using
the same approach [7]. In each case, the use of the air data probe
allowed the estimation of wind and turbulence so that the OEM could
be applied on data with the effect of the wind removed. Even so, the
process required frequent intervention to produce good results [7].
Hur and Valasek describe the development of another highly
instrumented platform including an inertial measurement unit
(IMU), flow sensors, and even accelerometers installed in the
midsection of the parafoil [8]. They demonstrated the identification
of a linear 8-DOF model from simulation data using an observer/
Kalman filter identification method described by Valasek and Chen
[9]. Kothandaraman and Rotea described the use of a computation-
ally efficient method to identify coefficients for a 6-DOF circular
parachute model assuming perfect knowledge of the winds [10].
Yakimenko and Statnikov presented a method for identifying aero-
dynamic coefficients of an 8-DOF parafoil model using a
multicriteria optimization method beginning with a parameter space
investigation to help address the problems of local minima and
infeasible regions in the parameter space [11]. In particular, they
noted that most of the aerodynamic coefficients in a general model of
a parafoil and payload system seem to be strongly correlated, there
are many sets of parameters that produce equally good reproductions
of the observed flight data, and the additional degrees of freedom
accounting for payload motion helped to match the natural
eigenvalues of the roll, pitch, and yaw measurements but did not
affect the matching of the system trajectory.

All of these works approach the problem in slightly different ways,
but a common thread among them is the necessity of using a highly
instrumented platform specialized for the system identification task
in order to obtain sufficient data for successful aerodynamic param-
eter identification. In contrast to these specialized platforms, fielded
airdrop systems have only a single GPS receiver [12—-14]. This is
desirable to reduce cost and complexity, especially because the GPS
receiver does not require any preflight calibration. The current work
describes areliable system identification procedure that requires only
GPS data, which would allow the system identification task to be
performed using the same hardware intended for the field. This is
highly advantageous in streamlining the development cycle of an
airdrop system. Of course, if it is possible to obtain measurements in
addition to GPS, it would not make sense to restrict the system iden-
tification to GPS data alone. In this case, the system identification

procedure described here could be used to develop an approximate
model based on GPS alone which could then be refined with
whatever additional sensor information is available. Depending on
the available sensor data, this refinement could be performed using
similar methods to the existing airdrop identification methods
mentioned previously [4—11]. Another possibility is that the model
made from GPS data using the proposed procedure could be simply
augmented to capture unmodeled dynamics observed in the
additional sensor channels using more general system identification
techniques such as those recently developed by Majji et al. [15,16].

A number of techniques for deriving particular aspects of the flight
dynamic characteristics of a parafoil and payload system using only
GPS data have been described [12—-14]. The restricted amount of
sensor information available leads to a very restricted dynamic model
of the system, normally a linear 3-DOF representation. Typically,
only the steady-state longitudinal characteristics are modeled by
developing a simple model of air speed and glide path angle as a
function of symmetric brake input; lateral dynamics consist of
modeling the system heading rate dynamics as a first- or second-
order filter of the asymmetric brake input (trailing-edge deflection is
commonly referred to as a brake input). In contrast, the current work
seeks to develop a 6-DOF, nonlinear simulation model using only
GPS data. This type of simulation model is beneficial during GNC
development to ensure that the guidance and control algorithms are
robust to nonlinear behaviors that may not be captured by simpler
representations.

The key to developing a 6-DOF model from GPS data alone is the
use of an aerodynamic model which requires the identification of a
minimum number of coefficients. An alternative to applying the
standard aerodynamic model of a point with force and moment
coefficients was used by Slegers and Costello to explore control
issues with parafoil and payload systems [17]. Their model makes
use of five discrete canopy elements producing only lift and drag, so
aerodynamic moments and side force are produced by the orientation
of the elements and their displacement from the center of mass. This
is highly attractive for system identification with minimal sensor data
because only lift and drag coefficients need to be estimated to obtain a
complete nonlinear 6-DOF simulation model, and these coefficients
can be estimated entirely from steady-state information.

The first step in the proposed system identification procedure is
designing input sequences to ensure that high-quality data can be
obtained in a timely manner. Second, the vehicle airspeed is
estimated by extracting the wind vector from the GPS data. Once the
effect of the wind vector is removed, steady-state longitudinal and
lateral control response data in the form of lift, drag, and turn rate vs
symmetric and asymmetric brake deflection is extracted. This steady-
state data represent the highest quality information obtained from the
flight tests because it has been averaged over a large number of
measurements to remove the effects of sensor error and turbulence.
All of the parameters of the simulation model affecting the steady-
state control response are then determined through nonlinear
regression to match the steady-state control response data as opposed
to attempting to match flight data directly. At this stage, a complete 6-
DOF nonlinear model has been created based only on GPS data.

The proposed system identification procedure is applied to a small
parafoil and payload system. The system has an IMU in addition to a
GPS receiver. This allows the time histories of payload orientation
and angular rates from flight data to be compared with simulation
results for the model derived using only GPS data. These com-
parisons are used to ensure that an adequate modeling of the transient
characteristics of a parafoil and payload system can be achieved
using a model derived from GPS data alone. Finally, the identified
simulation model is validated against data from an additional flight
test that was not used for system identification.

II. Parafoil and Payload Dynamic Model

Figure 1 shows a schematic of a parafoil and payload system. With
the exception of movable parafoil brakes, the parafoil canopy is
considered to be a fixed shape. The combined system of the parafoil
canopy and the payload are modeled with 6 DOF, including three
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Fig. 1 Parafoil and payload schematic.

inertial position components of the total system mass center as well
as the three Euler orientation angles. The canopy is modeled as seven
flat panels, five main panels representing the ram-air canopy and two
fins under the outboard edges of the canopy. The fins provide
additional directional stability to provide a more realistic transient
turn rate response as well as roll and yaw damping to delay the onset
of turning into a deep spiral. Each panel produces only lift and drag,
so side force and aerodynamic moments are developed from the
orientation and displacement of the panels relative to the center of
mass. Suspension lines are not modeled explicitly.

Derivations of the equations of motion for a 6-DOF rigid aircraft
are readily available in the flight dynamic literature [1]. The current
discussion focuses only on the aspects of the equations of motion
which are unique to parafoil and payload systems and to the
particular aerodynamic modeling approach used in this work. The
kinematic equations for the parafoil and payload system are provided
in Egs. (1) and (2). The shorthand notation for trigonometric
functions is employed where sin(x) =s,, cos(x) =c,, and

tan(x) = t,:
X u
{)’} = [TIB]T{ v } (D
z w

¢5 1 S¢fg C¢t9 P
=10 Cp —S4 q 2)

1/} 0 s4/ce cy/co r

The matrix [T;z] represents the transformation matrix from the
inertial reference frame to the body reference frame:

CyC CpS —Sy
Tip = | S¢S9Cy — CpS  SpSSy + CoC  $4Cq 3)
CySeCy + S¢S CySeSy — S¢C CyCy

The dynamic equations are formed by summing forces and
moments about the system center of gravity (CG), both in the body
reference frame, and equating to the time derivative of linear and
angular momentum, respectively:

i u Xw Xum
m v HI[SEl v =Yy + 4 Yau
w w Zy Zau
Xap X
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S is the skew symmetric operator, used to express the cross product
of two vectors in terms of the components of the vectors in a specified
frame. For example, if the vectors a, b, and ¢ are expressed in terms
of their components in frame B,

c, 0 —a, a, b,
c=axb& ¢, =] a; 0 —a, b,
c, —a, a 0 b,
b,
=S¢5 b, (©6)
b,

Forces appearing in Eq. (4) have contributions from weight,
aerodynamic loads on the canopy and payload, and apparent mass
(AM). The weight contribution is given in Eq. (7):

Xy —Sq
Yy » =mgy SeCq @)
Zy CyCo

Defining the transformation from the body frame to the frame
attached to the ith element of the canopy as [T ;] and defining the
wind speed and wind heading in the inertial frame as Vy, and ¢y,
respectively, the “aerodynamic” velocity of the ith element is given
by Eq. (8). The term aerodynamic velocity is used to refer to the
velocity of a particular point on the system with respect to the air. The
aerodynamic velocity of the payload is given by the same equation
with the body frame to element transformation equal to the identity
matrix:

ﬁi u )4 VW,X
v; ¢ =[Tg,] v o — [ng‘i] q ¢ — [T VW.y ®)
lI)i w r VW.Z

The aerodynamic forces on the canopy elements are expressed in
terms of lift and drag coefficients, which are functions of the angle of
attack of each element, o; = tan™! (;/;), as shown in Egs. (9) and
(10). Equation (11) defines the canopy aerodynamic forces in the
body reference frame. For the outboard panels, the lift and drag
coefficients are modified by the control deflections, §;. In addition to
the linear term, a term proportional to the third power of control
deflection was added to account for the rapid changes in lift and drag
coefficient observed for large brake deflections:

CL,i = CLO,i + CLA.iai + CLB.iSi + CLB3J'8? (9)

Cpi = Cpo; + Cparietf + Cppi8; + Cpps 6} (10)
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The aerodynamic force on the payload consists entirely of profile
drag and is given by Eq. (12):

Xyp 1 - - - IZP
Yip =—§pSPCDVP,/u%,+vf)+w%, Up (12)
AP Wp

Parafoils with small mass-to-volume ratios can experience large
forces and moments from accelerating fluid. These are termed AM
effects. A precise accounting of these effects can substantially
complicate the dynamic equations, but it is possible to obtain a good
approximation of the effects with only a few terms. The approximate
forms used for the AM forces and moments are given in Egs. (13—15).
Parametric approximations given by Lissaman and Brown are used to
determine the AM and inertia coefficients in Eq. (15) [18]:

Xaw i ;
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Zam w r
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The dynamic equations of motion are found by substituting all
forces and moments into Eqgs. (4) and (5), resulting in the matrix
solution in Egs. (16-18):
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Equation (16) represents a set of coupled, nonlinear differential
equations. The matrix on the left-hand side of Eq. (16) is a function of
the mass and geometry properties of the parafoil. The geometry of the
parafoil is assumed to be fixed, so this matrix is constant and only
needs to be inverted once at the beginning of the simulation. With
specified initial conditions, the states can be numerically integrated
forward in time.

ITII. System Identification Method

The proposed system identification method is summarized in
Fig. 2. The main idea is to match the steady-state response to control
input extracted from segments of flight-test data. To this end, the
majority of the procedure is dedicated to processing flight-test data to
obtain high-quality estimates of the steady-state lift, drag, and turn
rate response to control input. Aerodynamic coefficients in the
simulation model are then used to match these extracted steady-state
characteristics rather than the flight-test data directly. For this
procedure, validation refers to checking the identified model against
data from a flight that was not used during the matching process.

A. Input Sequences

The structure of the input sequence is critical to obtaining high-
quality data for system identification. The sequence must ensure that
both steady-state and transient characteristics can be estimated, and
the sequences for each flight must be arranged so that the loss of any
single flight is not detrimental to the system identification effort.

The input sequences were designed primarily based on the need to
generate high-quality estimates of the steady-state characteristics of
the parafoil and payload system. This requires relatively long periods
of constant control input at various combinations of symmetric and
asymmetric brake deflection. Given the total amount of flight testing
time available, the number of control input combinations to be tested
was chosen so that at some point during flight testing, each control
input would be held for two to four times the amount of time
necessary for the system to reach steady state. This ensures that there
will be enough data available after the system has reached equilib-
rium to average the steady-state response over a series of measure-
ments to reduce the influence of sensor errors and turbulence. In
addition, the order of the control input combinations are selected so
that the system will receive doublet maneuvers in both symmetric
and asymmetric brakes as it transitions from one control combination
to the next. This ensures the system is excited sufficiently so that the
transient characteristics can be determined. The actual control
sequences used in flight test are shown in the results section.

B. Extracting Steady-State Lift, Drag, and Turn Rate

The first step in the system identification process is wind
estimation. The ground track velocity measured with GPS can be
decomposed into an airspeed vector (V) and wind vector (V) as
shown in Fig. 3. Since the ground track velocity vector is the only
measured quantity, solution of the vector diagram is an
underdetermined problem. Solution of the vector diagram requires
a series of measurements at different azimuth angles.

Fly Input Sequences
Tailored to Steady
State Estimation

GPSdata | V.4.x

A\ 4
Estimate Wind,
Extract Steady State
Characteristics

Lift, Drag, and Turn

Rate vs. Control Input ACHRACARACY

A 4

Estimate Aero.
Coefficients to Match
Steady Lift, Drag, and

Turn Rate Behavior

Nonlinear 6
DOF Model
A 4

Validation

Fig. 2 System identification procedure.
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Fig. 3 Decomposing measured velocity vector.

The approach taken is to break the flight into segments of constant
control deflection, then assume a constant forward airspeed (V,)) and
wind vector for each segment. This leaves three unknowns (two wind
vector components and the airspeed) for each of the flight segments.
For a series of n measurements taking during a constant control
segment, the x (north) and y (east) components of the ith measure-
ment of ground track velocity can be decomposed into a wind
component and an airspeed component:

X;=Vyx + Vycos(¥,), Vi = Vwy + Vosin(y,) (19)

Vi= &=V + 0 — Vwy)?
= Viz + V%V =2(x;Vy, + .).’iVW,Y) (20)

For the constant control segment, the airspeed and wind vector are
assumed constant, so these terms can be removed from Eq. (20) by
subtracting the expected values:

Vi —E(V5) =0=V} — E(V}) = 2((; — E(¥)) Vi .
+ i = EG))Vwy) @n

where the expected values of the measured quantities are estimated
by sample means:

E(sz) = KUva, E(x;) = ps, E(y;) = My (22)

The problem of estimating the wind vector components for the
constant control segment can now be cast as a linear regression
problem as shown in Eq. (23). Once the wind vector components
have been calculated, the airspeed can be estimated for each
measurement according to Eq. (24). The steady-state airspeed of the
vehicle for a given control deflection is obtained as the average of the
airspeed estimates over a particular constant control flight segment:

Vv —

{Vw.x} _1 1 .Mvz o)
VW,Y 2 V2 _

n 123%)

X — My Vi Ky

).Cn_:u’)i' yn_:uf/

‘70,1‘ = \/(xlz —Vix) + 07 = Vi), Vo = v 24

If the system flies in a straight line, the ground track velocity
components will be constant and the matrix on the left-handed side of
Eq. (23) will contain only measurement noise. The conditioning of
the problem is improved by adding measurements from a variety of
azimuth angles. Each constant control segment will create a constant
turn rate and will contain a continuous string of measurements over a
span of heading angles. Insight into the effectiveness of airspeed
estimation using the specified technique can be given by assuming
that GPS measurements are available at a discrete number of heading
angles equally spaced over a span Ay. Equation (23) can be solved in
closed form and the propagation of GPS measurement errors can be

determined analytically for a given number of measurements. An
upper bound on the analytical solutions with as few as three heading
measurements can be expressed simply by Eq. (25):

o(Vaps)

a(Vy) <W7

8 = min(|Ay|, 27) (25)

As the heading angle span tends to zero, the airspeed estimate error
is unbounded, and as the heading angle span tends to a complete
circle, the airspeed estimate error is bounded by the GPS velocity
measurement error. If the airspeed error bound obtained from
Eq. (25) for a particular flight segment is unacceptably large, the wind
estimates from adjacent segments of the same flight can be averaged
and used in Eq. (24).

Once the airspeed is determined, steady-state lift, drag and turn
rate data can be extracted for each segment of constant control
deflection. Based on the vector diagrams in Fig. 4, lift and drag can be
calculated from turn rate, airspeed, and descent rate data according to
Egs. (26-28). The steady-state lift and drag data are then converted
into coefficient form for matching to simulation:

1/tany =V,/z=L"/D (26)

L' =Wcosy 27

L=+L?+ (mVyw) (28)

C. Matching Simulation Model to Steady-State Data

The rigging of the parafoil and payload system is fixed, which
implies that for a given symmetric brake deflection there exists a
single trim angle of attack. This means that the lift and drag vs angle-
of-attack behavior cannot be estimated from steady-state flight-test
data for a typical airdrop system.

Nicolaides [19] conducted extensive wind tunnel tests on airdrop
canopies and compiled trends of lift and drag vs angle-of-attack
behavior as a function of aspect ratio. The lift and drag vs angle-of-
attack coefficients (C;, and Cp,,) were selected based on these
empirical trends. For the canopy element representation, Cpy, is
assumed to be constant across the span, while C;, is varied to
approximate an elliptical lift distribution while maintaining the lift
curve slope of the entire canopy at the desired value. The shape of the
lift and drag vs angle-of-attack curves are set according to experi-
mental trends, leaving the level of the lift and drag curves to be set to

Fig. 5 Canopy geometry parameters.



match the trim characteristics observed in flight. Three remaining
parameters, C;, Cpy, and the canopy incidence angle are required to
determine the trimmed flight condition for the simulation model. For
simplicity, C; is fixed at zero so that Cp,, and the canopy incidence
angle can be set to match the trim lift and drag coefficients derived
from flight test. The remaining aerodynamic coefficients (C; g, C; p3,
Cpp, and Cpp;3) are associated with steady-state response to brake
deflection. These coefficients determine the change in longitudinal
trim of the system under symmetric braking as well as the change in
lateral “trim” of the system under asymmetric braking. Lateral trim is
used here to refer to a flight condition in which the system has
reached a steady-state turn rate under an asymmetric brake input. The
small fins under the outboard edges of the canopy will also have an
effect on the lateral trim condition. The lift and drag characteristics of
these fins were fixed, but their area was allowed to vary. The logic
behind this choice is that the effective area of the fins can be increased
to account for spanwise effects not modeled by the five main panels.
This leaves a total of five parameters to be determined to match flight-
test data for steady-state lift and drag at different levels of symmetric
brake as well as steady-state turn rate at different levels of asym-
metric brake.

Longitudinal trim is determined according to Eq. (29), which
represents a system of three nonlinear equations (nonlinear due to the
relationship between trim velocity, angle of attack, and aerodynamic
forces). Lateral trim is determined according to Eq. (30), which
represents a system of eight nonlinear equations. Lift coefficient is
assumed to vary linearly with angle of attack, so there is only one
possible trim condition for a given control input. The quadratic
relationship between drag coefficient and angle of attack creates a
singularity when angle of attack is zero, so the initial guess for the
trim velocity components should result in a positive angle of attack
(this implies setting the initial guesses for u and w to positive
numbers). In the author’s experience, quadratic convergence to the
trim condition is achieved from the first iteration if the initial guess
for the trim velocity components are set to average values observed in
flight test:

given: {¢,v, p,q,r}T =0
find: {6, u, w}”, s.t.46, i, W}’ =0 (29)

find ; {¢, 9, u,v,w,p,q, r}T7 S.t.{(]’.), é, I/.t, ‘Dv 11), i)7 5], r}T =0
(30)

A nonlinear set of trim equations can be solved to determine
steady-state behavior at a specified control setting for a given set of
aerodynamic parameters. The goal of the system identification
exercise is to solve a nonlinear regression problem to determine the
aerodynamic parameters such that the trim lift, drag, and turn rate vs
control input behavior of the simulation model matches flight-test
data. Both the nonlinear regression and the nonlinear trim problem
are well behaved so the details of the solution procedure are not
critical. The nonlinear regression to determine the aerodynamic
parameters is performed using the Levenberg—Marquardt method,
while the nonlinear trim equations are solved at each iteration of the
aerodynamic parameters using the Newton—Raphson method [20].

IV. Experimental Parafoil and Payload System

Flight tests were conducted with a miniature parafoil and payload
system [21,22]. The canopy geometry parameters defined in Fig. 5
are listed in Table 1 along with the mass, inertia, and AM properties
of the system. The two inputs to the system, left and right brake
deflection, modify the aerodynamics of the outer canopy panels. The
parameters defining the five main canopy elements and two
stabilizing fins are given in Table 2. The payload contains a sensor
suite consisting of accelerometers, gyroscopes, a magnetometer, a
GPS receiver, and a barometric altimeter.

Table 1 Mass and geometry parameters

Parameter Value Units
A 70 deg
b 1.77 m
c 0.8 m
d 1.2 m
Sp 0.0325 m?

Total weight 2.372 kg
Ixx 0.423 kg - m?
Iyy 0.401 kg - m?
1, 0.0529 kg - m?
Iy, 0.0298 kg - m?
A 0.02 kg
B 0.13 kg
C 0.64 kg
P 0.011 kg-m
Q 0.013 kg -m
R 0.006 kg - m?

Table 2 Canopy element definition

Size Orientation Distance from mass center
Element S, m? ¢,deg  6,deg x,m y, m Z, m
1 0.28 35 —18 0 044 —1.11
2 0.28 175 —18 0 022 —1.18
3 0.28 0 —18 0 0 —-1.2
4 028 —17.5 —18 0 —-0.22 -—1.18
5 0.28 -35 —18 0 —-044 —1.11
6 0.1 90 0 -0.5 0.8 -1
7 0.1 -90 0 -05 —-0.8 —1
V. Results

The following results were generated by applying the techniques
described previously to flight-test data for the microparafoil and
payload system. A set of three flights was conducted specifically for
system identification purposes and is used for matching the
simulation model. A fourth flight conducted on a separate occasion
during GNC development is used to validate the identified model.

A. Wind and Airspeed Estimation

The wind and airspeed estimation technique described previously
was applied to GPS data from all of the flights. Figure 6 shows a
comparison of the ground track velocity measured during flight 1
with the ground track velocity constructed from the extracted
airspeed and wind estimates for each segment of constant control
input. The estimates are discontinuous at this stage because the goal
is only to extract steady-state data averaged over each segment of
constant control input.

Estimated airspeeds for each constant control segment along with
the estimated error bound determined by Eq. (25) are listed in
Table 3. Two of the flight segments contained less than a 120 deg
variation in heading angle, implying that the airspeed estimation
error for these segments may be more than four times the GPS
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Fig. 6 Example reconstruction of ground track velocity from estimated
wind and airspeed.



Table 3 Airspeed estimate statistics for constant
control segments

Flight &8, 8 Ay,deg V, m/s o(V,),m/s

1 0.33 0.17 189 7.4 0.3
1 -0.33 0.50 195 72 0.4
1 0.00 0.33 71 6.9 0.4
1 0.33 0.17 606 7.2 0.4
2 —-0.67 0.67 1010 6.7 0.3
2 033 0.17 141 7.3 0.7
2 —-0.33 050 202 72 0.5
2 0.00 0.33 112 7.1 0.5
2 0.33 0.17 371 73 0.5
3 0.00 1.00 360 4.0 1.2
3 1.00 0.50 208 5.8 3.4

Table 4 Identified aerodynamic parameters

Fixed Used to match data
Parameter Value Parameter Value
Cro 0 Incidence —18 deg
Cp4 (overall) 2 Cpo 0.11
Choar 2 Cpp 0.03
Crp 0 Chgs 0.1
Cras 0 Stin 0.1 m?

velocity measurement error. For these two flight segments, the
airspeed is extracted using an average of the wind estimates from
adjacent flight segments. The error estimates for these segments are
assumed to be the larger of the error estimates for the adjacent flight
segments.

B. Matching Steady-State Lift, Drag, and Turn Rate Data

The aerodynamic coefficients determined for the simulation
model are given in Table 4. The lift curve slope (C;,) given in the
table is the value for the entire canopy selected to match wind tunnel
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Fig. 7 Matching steady-state lift and drag coefficient vs symmetric
brake deflection.

data. The lift curve slopes for the five main canopy elements are
varied across the span to approximate an elliptical lift distribution
(Cpas =1.4,2.32,2.54,2.32, 1.4). The parameters determining
the effect of symmetric braking on the lift coefficient curve (C; 5 and
C;p3) did not have a significant impact on the matching of the
simulation to flight-test data, so they were set to zero. The standard
deviation of the matching error between the simulated and observed
lift and drag coefficients is on the order of 10%, but the inclusion of
these parameters produced only a 0.5% reduction in the error.

The fin area that produces the best match with the turn rate data is
significantly larger than the actual fin area (0.1 vs 0.04 m? for the
actual fins). The enlarged fin area in the simulation model indicates
that there is likely an additional source of directional stability and/or
roll and yaw damping that is not modeled by the five main canopy
panels.

Figures 7 and 8 compare the lift, drag, and turn rate data extracted
from the flight-test data to steady-state values from the identified
simulation models. Notice in Fig. 7 that symmetric brake deflection
results in an increase in both the steady-state lift and drag coefficients
of the system even though the effect of braking is modeled purely as
additional drag. This is because the additional drag causes the canopy
to trim at a higher angle of attack, producing an overall increase in lift
as well as drag. The dramatic increase in lift and drag at high
symmetric brake deflection is not matched by the simulation. The
problem is that if the brakes are given sufficient control authority to
induce such high lift and drag under symmetric braking, such control
authority will produce far too much turn rate under asymmetric
braking. It seems that the brakes are able to produce a greater effect
when deflected together than the sum of their effects when they are
deflected separately. Precise modeling of control behavior near stall
is not typically a requirement for airdrop simulation, so no attempts
were made to match this behavior exactly.

C. Comparing Time Histories for Validation

The 6-DOF simulation model using the seven discrete canopy
elements is completely specified by matching the steady-state data.
IMU data are used purely for validation and was not used during the
identification process. All angular rate data displayed in the
following charts were passed through a zero-phase, second-order
Butterworth filter with a cutoff frequency of 1-5 Hz.

The measurement data contain sensor error, relative motion
between the canopy and payload, and excitation from turbulence.
These are all sources of noise that will not be matched by a six DOF
representation of the system. For this particular system, the transient
response of the canopy to a control input takes approximately 1-3 s to
settle; so it is safe to assume that any variation in the measured
velocities, orientation angles, and angular rates observed after the
first five seconds of a constant control segment are the result of sensor
error, relative motion, and turbulence. The level of noise associated
with these disturbances can then be estimated simply by computing
the standard deviations of the measurements over the portions of each
constant control segment after the assumed 5 s settling period. For
comparison, the standard error between the simulated and measured
response is also calculated. The estimated noise level (o) and
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Fig. 8 Matching steady-state turn vs asymmetric brake deflection.



Table 5 Comparison of matching error
to estimated noise levels

Flight 1 Flight 6

State og oy i og oy I

Vo, m/s 039 041 1.1 230 227 1.0

z,m/s 020 054 27 0353 140 2.6
¢, deg 1.57 499 32 604 7.01 12
0, deg 142 291 21 515 649 13

podeg/s 861 936 LI 147 213 15
g.deg/s 859 975 11 180 245 14
rodeg/s 117 126 11 267 286 Ll

standard matching error (0,,) are obtained for every response for each
constant control segment according to Eq. (31):

Op = 1/”\/Z(yi.MEAS — Vmeas)’

i=l,n

oy =1/n Z (Visv = Vimeas)’ 3D
i=1.n
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Fig. 10 Simulation comparison to IMU data for flight 1.

The ratio of the matching error to the estimated noise provides a
convenient way of estimating the quality of the simulation model. A
ratio of one means that the error between the simulation model and
the measurements is of the same magnitude as unmodeled distur-
bances, implying that the simulation model provides an excellent
reproduction of the system dynamics. The matching error, estimated
noise levels, and the ratio between the two are reported for each flight
1 and flight 3 in Table 5. These values are averages for each flight of
the estimates computed from the individual flight segments. Flight 1
contains only moderate variations in symmetric brake deflection and
is appropriate for evaluating the lateral dynamics of the simulation
model. Flight 3 contains a large symmetric brake input for evaluating
the longitudinal dynamics and also a spiral turn for evaluating the
ability of the simulation model to capture highly nonlinear behavior.

Referring to Table 5, the ratio of matching error to measurement
noise for forward velocity, descent rate, and yaw rate should all be
close to one because the simulation model was indirectly matched to
the steady-state values of these measurements (indirect in the sense
that forward airspeed and descent rate were converted to lift and drag,
and yaw rate of the payload is only approximately equivalent to turn
rate when the Euler angles of the payload are small). This is the case
for the forward airspeed and yaw rate, but the matching error for
descent rate is quite large. This is because the descent rate behavior
was not repeatable from flight to flight, most likely due to significant
variations in the vertical wind component caused by thermal activity.
By comparing repeated applications of the same control input during
different flights, the standard deviation of the variation in descent rate
from flight to flight was estimated to be 1.02 m/s, which fits nicely
with the observed matching error. The ratios of matching error to
measurement noise for the other states are all close to 1 as well, with
the exception of the roll and pitch angles for the first flight. However,
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the actual values of the matching error are on the order of only 5 deg.
This implies that the simulation model based only on steady-state
GPS data is able to reproduce the dynamic pitch and roll response of
the actual system to an accuracy on the order of 5 deg.

1. Comparison of Time Histories for Flight 1

Figure 9 shows the control input sequence for flight 1 and Fig. 10
compares the lateral dynamic response from the simulation model
with the measured data. The yaw—roll coupling seems to be very well
captured given that the simulation model was created based only on
steady-state data derived from GPS measurements. This indicates
that the simple canopy aerodynamic model based on seven elements
producing only lift and drag is able to reproduce the relevant features
of the parafoil dynamics.

2. Comparison of Time Histories for Flight 3

The control input sequence for flight 3 is shown in Fig. 11. The
application of full brakes at 5 s represents a flare and is purely a
longitudinal maneuver. At 25 s, the controls transition to full right
brake, initiating a tight, spiral turn. Figure 12 compares airspeed and
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descent rate, Fig. 13 compares roll and pitch angle, and Fig. 14
compares the roll and pitch rate response of the simulation model to
the flight-test data. The amplitudes and frequency responses of
the simulation are all well within an order of magnitude of the
observations for both the flare and the spiral turn maneuvers. The
descent rate comparison suffers from large disturbances to descent
rate from thermal activity mentioned previously as well as the
inability to match the dramatic change in lift and drag coefficient at
high brake deflection mentioned in the discussion of the steady-state
matching. The flare at 5 s induces a pitch oscillation. The dynamic
response of the simulation model in velocity and pitch is similar in
both amplitude and frequency to the observed oscillation.

The simulation is also able to adequately capture the coupling
between the lateral and longitudinal dynamics during the spiral turn.
It is important to note that the spiral turn is an extreme maneuver in a
highly nonlinear dynamic region that the system would be unlikely to
enter during normal flight operations. The fact that the simulation
model shows qualitative agreement to the flight-test data during this
maneuver is an indication that the simple canopy aerodynamic model
is able to reproduce complex, nonlinear features of the parafoil
dynamics.
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3. Model Validation

To validate the identified model, simulation results are compared
to data from a flight test that was not used during the system
identification process. The actual canopy and payload were different
for this flight, though they were both made to the same specifications.
The recorded control inputs for this canopy were adjusted to account
for a control bias (36% left control required to fly straight). The
control inputs for this flight with the control bias removed are shown
in Fig. 15. Comparisons between the flight data and simulation data
using the identified aerodynamic model are shown in Fig. 16. The
identified model is in good agreement with this separate set of flight
data, indicating that the system identification procedure was able to
produce a valid representation of this parafoil and payload system.

VI. Conclusions

A specialized system identification method for parafoil and
payload air vehicles using only GPS data is reported here that has
been found to be very robust and reliable in practice. The proposed
method uses a two-phase approach beginning with a wind estimation
procedure to extract steady-state flight characteristics followed by an
aerodynamic parameter identification to match these steady-state
characteristics rather than the flight-test data directly. These steady-
state control characteristics are averaged over an extended number of
measurements, reducing the impact of sensor noise and turbulence so
that high-quality estimates can be obtained. Using only GPS data
from the flight test, a full 6-DOF dynamic simulation model is
generated. A simplified aerodynamic representation of the canopy
that requires identification of only steady-state vehicle response to
control inputs enables complete definition of the dynamic model.
Since the system identification method only needs steady-state
response of the aircraft due to a set of constant control inputs, the
flight-test procedure is straightforward and can be performed in a
manual mode or autonomously with an autopilot. While the
simulation model is created entirely from steady-state data, the
simple, physics-based representation of the canopy allows even
highly nonlinear dynamic behavior to be reproduced accurately in
simulation.
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