
Digital Commons @ George Fox University
Faculty Publications - Department of Electrical
Engineering and Computer Science

Department of Electrical Engineering and
Computer Science

2005

A Sin of Omission: Database Transactions
David Hansen
George Fox University, dhansen@georgefox.edu

Follow this and additional works at: http://digitalcommons.georgefox.edu/eecs_fac

Part of the Databases and Information Systems Commons, and the Higher Education Commons

This Article is brought to you for free and open access by the Department of Electrical Engineering and Computer Science at Digital Commons @
George Fox University. It has been accepted for inclusion in Faculty Publications - Department of Electrical Engineering and Computer Science by an
authorized administrator of Digital Commons @ George Fox University. For more information, please contact arolfe@georgefox.edu.

Recommended Citation
Hansen, David, "A Sin of Omission: Database Transactions" (2005). Faculty Publications - Department of Electrical Engineering and
Computer Science. Paper 5.
http://digitalcommons.georgefox.edu/eecs_fac/5

http://www.georgefox.edu/?utm_source=digitalcommons.georgefox.edu%2Feecs_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.georgefox.edu/?utm_source=digitalcommons.georgefox.edu%2Feecs_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.georgefox.edu?utm_source=digitalcommons.georgefox.edu%2Feecs_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.georgefox.edu/eecs_fac?utm_source=digitalcommons.georgefox.edu%2Feecs_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.georgefox.edu/eecs_fac?utm_source=digitalcommons.georgefox.edu%2Feecs_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.georgefox.edu/eecs?utm_source=digitalcommons.georgefox.edu%2Feecs_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.georgefox.edu/eecs?utm_source=digitalcommons.georgefox.edu%2Feecs_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.georgefox.edu/eecs_fac?utm_source=digitalcommons.georgefox.edu%2Feecs_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.georgefox.edu%2Feecs_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1245?utm_source=digitalcommons.georgefox.edu%2Feecs_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.georgefox.edu/eecs_fac/5?utm_source=digitalcommons.georgefox.edu%2Feecs_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arolfe@georgefox.edu

A Sin of Omission: Database Transactions

David M. Hansen
George Fox University
Newberg, OR 97132

dhansen@georgefox.edu

Abstract

Database courses are under increasing pressure to include new topics
which inevitably leads to a decision about which topics are essential to the
course and which can be omitted to make room for others. Recent surveys
have indicated that many instructors are reducing or eliminating coverage
of “transaction management” from their introductory database courses.
As both an academic and a practitioner, I believe that this is a mistake.
This paper discusses why the semantics of transaction management should
be an integral topic in any introductory database management system
course.

1 The Squeeze Is On

The introductory database management systems (DBMS) course, like many
courses in the undergraduate curriculum, is being forced to change. Databases
are an integral component in most every information system and, with the ex-
plosive growth of web-accessible information systems, courses in database man-
agement are increasingly incorporating topics related to managing and accessing
data via the web. A recent survey of topics taught in the introductory DBMS
course shows that the topics receiving the greatest increase in coverage include
the Internet, client-server, web interfaces, and client tools. At the same time,
topics such as system architecture, database design, and functional dependencies
are seeing greatly decreased coverage[7].

While “transaction management” is not among those topics seeing greatly
reduced coverage, Robbert and Ricardo’s survey indicates that transaction man-
agement was already a topic taught by just 54% of the faculty surveyed in 2001
and only 45% of the faculty surveyed in 2002[7, p. 140] — a figure I find worri-
some.

But if transaction management isn’t being displaced as significantly as other
topics, why the concern about transaction management in particular? The rea-
son is that the use of transactions is essential to the correct use of a DBMS. One
can ignore many of the underlying DBMS implementation details and formal
database theory yet still be a capable DBMS user. However, students must be

1

taught how to properly understand and use transactions; failure to do so leads
to common programming errors that we would never tolerate in other subjects
and that continue to wreak havoc in deployed information systems.

2 Transaction Management

The transaction management component of a DBMS insures that a logical group
of database operations are executed together in such a way as to preserve four
properties:

1. Atomicity — all operations are completed or none are completed

2. Consistency — the database moves from one “consistent state” to another

3. Isolation — concurrent transactions do not affect one another

4. Durability — changes committed to the database can not be lost

These properties, known as the ACID properties of database transactions, are
critical to the correct use of a DBMS. The most important guarantee of transac-
tions is a consistent database state. To use a DBMS correctly in any non-trivial
application, transactions must be properly understood and used1.

2.1 Ignoring Transactions

The most common problem arising from the misuse of (or simply ignoring)
database transactions is a race condition that can lead to an inconsistent database.
As a simple example, suppose my wife and I both visit ATMs concurrently. Each
of us withdraws $100 from our checking account. During my transaction, the
ATM reads my balance b in one transaction and subtracts $100 from b. Mean-
while, the ATM my wife is using also reads the balance b and subtracts $100
from the balance. Both ATMs now write back the updated balance in update
transactions. At this point the database is inconsistent as the balance should
reflect the sum of all deposits minus all withdrawals. But our balance does not
reflect all withdrawals as one has been lost. The savvy reader may argue that
the problem that arises in this example can easily be fixed if we simply amend
the update transaction to set the balance equal to the current balance minus
the withdrawal:

1Compounding the problem, transaction management has been made transparent by many
DBMSs. Some (unfortunately) popular DBMSs simply do not have multi-statement transac-
tion semantics as they are not designed for concurrent access. As a practitioner, I find the
use of these sorts of single-user “DBMS” products for course projects inappropriate; students
fail to deal with and understand the ramifications of concurrent access to a shared database.
Other DBMSs have made transactions transparent by supporting “automatic” transactions
where, by default, each individual database query or update statement is treated as a single
self-contained transaction; the user does not need to explicitly “begin” and “commit” trans-
actions as the DBMS implicitly begins and commits a transaction for each statement. In
both cases, the importance and correct use of transactions are being hidden from users of the
DBMS.

2

update account set balance = balance - 100 where ...

While this is true for the trivial example above, it is not true of all, or even most
sequences of database queries and updates. Many database updates include
more substantial computations and thus the boundaries of the transaction must
include retrieving the data from the database, performing computations in the
application, and updating the database.

In addition to race conditions, many DBMSs allow users to relax concurrency
constraints in ways that can lead to non-serializable transaction schedules. For
example, users can choose to allow “dirty reads” which, when used properly, can
be helpful in limited situations where precise answers are not critical and whose
computation would adversely impact the operation of the database. However,
users must understand that allowing dirty reads in general can likewise lead
to an inconsistent database state. Suppose transaction T1 reads uncommitted
data written by transaction T2 and uses that data to update the state of the
database. If T2 should abort instead of commit, then the data written by T1

was based on a state of the database that technically never existed. DBMSs
that allow dirty reads do so with the tacit understanding that the user will not
use the data read to update the state of the database. This approach could
be used by a bank, for example, to generate a report that includes a relatively
close approximation for the sum of all account balances without impacting the
ability of other transactions to continue to update the database while the report
transaction was running over the entire database.

Concerns about the correctness of database access may seem somewhat aca-
demic, yet as a practitioner I have seen non-trivial, mission-critical database
accessing application programs that have tolerated race-conditions. In one in-
stance, developers I worked with knowingly sacrificed the guaranteed correctness
of their applications to avert the potential for concurrency conflicts2; they were
understandably concerned about the impact of a long-running update trans-
action on concurrent access to their database. Yet rather than find a way to
address the concern while maintaining consistency, they coded in such a way
as to introduce a race condition into their application. The developers felt that
the occurrence of a race condition was unlikely to arise because of the way they
expected users to access their database, yet they conceded that lost updates as
the result of concurrent access to the same data would be a serious problem.

2.2 Ignorance is Not Bliss

As academics we spend a good deal of time asserting that algorithms must be
correct. An algorithm that is incorrect, no matter how fast or elegant, is useless
and may be worse than no solution at all. Most Operating Systems courses cover
policies and mechanisms that ensure correct operation in the midst of concurrent
access to shared resources. Yet when it comes to concurrent access to shared
resources in database management systems, it seems that many instructors may

2I’m reminded of Knuth’s observation that “premature optimization is the root of all evil.”

3

be treating correctness, achieved via transaction management, as an optional
topic.

To correct this deficiency, the semantics of transaction management should
be taught and course-projects should be undertaken using a real DBMS with
full support for explicit multi-statement transactions. Students should assume
that most databases are deployed in multi-user environments where application
programs concurrently query and update the database. Assignments should in-
clude the implementation of application programs that demonstrate the correct
use of multi-statement database transactions. Students should also be aware of
the potential costs and conflicts of database transactions and acquainted with
strategies to deal with conflicts without sacrificing correctness.

2.3 Textbook Troubles

One difficulty in teaching students about transactions is that many textbooks
cover the semantics of transactions together with mechanisms for transaction
management and concurrency control[4, 8, 6]. This muddies the waters some by
combining the fundamental concept of transaction semantics, which all users of
a DBMS ought to know, with implementation details which are somewhat inci-
dental. In one introductory textbook that is largely devoid of implementation
details, Ullman and Widom still cover the semantics of transactions[9].

Instructors who do not wish to cover details about mechanisms (e.g., lock-
ing) and policies (e.g., serializability) must still cover transaction semantics. The
semantics of transactions can be covered with little or no reference to mecha-
nism and policy, focusing on the correctness of application programs that are
guaranteed to take the database from one consistent state to another.

2.4 Compounding the Problem

Ironically, instructors that fail to cover transaction management while adding
topics related to the Internet and web-data management are compounding the
difficulties of managing transactions by introducing the complexity of stateless
database interaction. While traditional application programs with embedded
database access can group a logical sequence of database and program operations
into a single database transaction, simple back-end web applications execute in
a stateless environment where one program may read data from the database to
be returned to the user while a subsequent program accepts input from the user
and updates the database. The traditional single-transaction approach does
not work in this environment[2]; other approaches, such as the introduction
of middleware transaction-processing monitors[3], must be used to guarantee
correctness in web-accessible information systems.

4

3 In Conclusion

I’ve worn a number of hats in my career, both as a practitioner in industry and
now as an academic. As a practitioner and an academic, I conclude by urging
every instructor teaching an introductory DBMS course to include coverage of
the basics of transaction management. One need not delve into implementation
or policy details, but every student should emerge with a solid understanding
of the semantics of transactions and how they relate to the overall semantics of
application programs that access the DBMS.

Yet the question remains of how to deal with the increasing pressure to in-
clude new topics into the introductory database curriculum — especially topics
related to the Internet and web-accessible information systems. At George Fox
University we recognized some years ago that we needed to address the broad
topic of integrated web-accessible information systems. Our approach was to de-
velop a hybrid course we call “Client-Server Systems” that introduces students
to three-tier information systems. This course includes elements of network-
ing via the Internet, web-interfaces, and client-server programming, along with
limited coverage of DBMS topics. The course serves a number of purposes.
First, it includes a non-trivial programming project that includes the construc-
tion of an end-to-end information system currently implemented using HTML,
JavaScript, PHP, and SQL. Along the way we cover basic elements of web-
specific Human Computer Interaction. While not a “database” course, we do
include an introduction to SQL and the essentials of both database transactions
and higher-level transactions that encapsulate user-interaction in the stateless
environment of the web. This course has proved to be very popular and is often
taken by Sophomores before they continue on to more traditional DBMS and
Networking courses.

Whatever approach is taken to the incorporation of new topics into the cur-
riculum, it is essential that students learn how to guarantee the correctness
of application programs that concurrently access a DBMS. The semantics of
transactions and transaction management must be an integral topic in any in-
troductory database management system course.

References

[1] Elizabeth S. Adams, Mary Granger, Don Goelman, and Catherine Ricardo.
Managing the introductory database course: what goes in and what comes
out? In SIGCSE ’04: Proceedings of the 35th SIGCSE technical symposium
on Computer science education, pages 497–498. ACM Press, 2004.

[2] Roger Barga, David Lomet, German Shegalov, and Gerhard Weikum. Recov-
ery guarantees for internet applications. ACM Trans. Inter. Tech., 4(3):289–
328, 2004.

5

[3] Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Branbilla, Sara Comai,
and Maristella Matera. Designing Data-Intensive Web Applications. Morgan
Kaufmann, 2003.

[4] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Sys-
tems. Addison Wesley, 2004.

[5] CORPORATE The Joint Task Force on Computing Curricula. Computing
curricula 2001. J. Educ. Resour. Comput., 1(3es):1, 2001.

[6] Raghu Ramakrishnan and Johannes Gehrke. Database Management Sys-
tems. McGraw Hill, 3rd edition, 2003.

[7] Mary Ann Robbert and Catherine M. Ricardo. Trends in the evolution of
the database curriculum. In ITiCSE ’03: Proceedings of the 8th annual con-
ference on Innovation and technology in computer science education, pages
139–143. ACM Press, 2003.

[8] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System
Concepts. McGraw-Hill, fourth edition, 2001.

[9] Jeffrey D. Ullman and Jennifer Widom. A First Course in Database Systems.
Prentice Hall, 2nd edition, 2002.

6

© CCSC, (2005). This is the author's version of the work. It is posted here by permission of
CCSC for your personal use. Not for redistribution. The definitive version was published
in The Journal of Computing Sciences in Colleges, 21, 1, October 2005, http://dl.acm.org/.

	Digital Commons @ George Fox University
	2005

	A Sin of Omission: Database Transactions
	David Hansen
	Recommended Citation

	tmp.1438711818.pdf.akWd7

