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[11 An exact solution for the dispersive Alfven switch-on shock is found in the case of
weak nonlinearity, weak dispersion, and weak damping. Two singular and apparently
nonphysical solutions are found as well. The switch-on shock solution is shown to reduce,
in the appropriate limits, to two documented special cases of the shock: one case being a
description of the planar shock without dispersion and the other being an asymptotic
description of the circularly polarized wave standing upstream from the shock in the
dispersive case. The solution developed here provides the complete shock structure for
either case. This exact solution may serve as a convenient basis for an analytical study of
the stability of dispersive switch-on shocks. INDEX TERMS: 7851 Space Plasma Physics: Shock
waves; 7839 Space Plasma Physics: Nonlinear phenomena; 3210 Mathematical Geophysics: Modeling; 2752
Magnetospheric Physics: MHD waves and instabilities; KEYWORDS: nonlinear, dispersive, Alfven, switch-on,
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1. Introduction

[2] Alfven waves have been observed in a variety of
settings [Burlaga, 1983; Hoppe et al., 1981; Kennel et al.,
1984; Tsurutani and Smith, 1986]. Observations of Alfven
switch-on shocks, on the other hand, are apparently confined
to a single reported detection of a quasi-parallel shock near
the Earth’s bow shock [Farris et al., 1994]. This scarcity of
observations of the field-aligned switch-on shock near the
bow shock is attributed, in part, to the relative geometry of the
bow shock and the solar wind [Farris et al., 1994; Green-
stadt, 1991]. A further constraint is provided by the limited
parameter regime in which switch-on shocks may form [De
Sterck and Poedts, 1999a], specifically that the plasma 3 and
Alfvenic Mach number, M, must satisfy the condition,

y(1-8)+1

1 <My < .
vy—1

(1)

It should be noted that the numerical simulations of De
Sterck and Poedts [1999a] of a two-dimensional (2-D) axi-
symmetrical flow do show the formation of switch-on
shocks along with significant structural changes of the
modeled bow shock correlated with this switch-on para-
meter regime.

[3] The conventional starting point for studies of the
nonlinear behavior of Alfven waves is found in the one-
dimensional magnetohydrodynamic (MHD) Navier-Stokes
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equations [Landau et al., 1984]. The reduction of this full
set of equations for parallel, or quasi-parallel, waves in the
limit of weak nonlinearity, weak dispersion, and weak
resistive damping leads to the so-called Derivative Non-
linear Schrodinger-Burgers (DNLSB) equation [Wyller and
Mjolhus, 1984]
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where B(x, t) = B, + iB.. Here B,, B., o, R, and R are real
valued with B, and B. being the components of the magnetic
field transverse to a uniform, ambient magnetic field
pointing in the x-direction. The value of « in the nonlinear
term is given by [Kennel and Edmiston, 1988]

1
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where C; and Cg are the intermediate Alfven and sound
speeds upstream. It is important to observe that the validity
of the model equation requires that C; and Cg are not too
close. As noted by De Sterck and Poedts [1999a], the
switch-on parameter regime requires 3 < 2/y or, in other
words, that (Cs)* < (C)) 2. Therefore the DNLSB description
of the shock will not be valid in the high 3 end of the
switch-on parameter regime which, by equation (1) above or
Figure 3 of De Sterck and Poedts [1999a], is also the
narrowest part of the allowed parameter regime with the
Alfvenic Mach number constrained close to unity. Finally, R
and R give the strength of the damping and dispersion
respectively.



[4] Without damping (R = 0 with R # 0), the resulting
form of the DNLSB equation is integrable and has a rich
complement of exact solutions [Kawata and Inoue, 1978;
Hamilton et al., 1992; Mjolhus and Hada, 1997]. Without
dispersion, (R = 0, with R # 0), the resulting equation also
has a known solution [Kennel and Edmiston, 1988]. The
DNLSB equation has been used to model the effects of
dissipation on DNLS solitons [Wyller and Mjolhus, 1984;
Hada et al., 1993], but no exact shock solution for the
DNLSB has been published to date. The exact solution for
the dispersive Alfven switch-on shock presented here is
shown to reduce to an asymptotic form for the dispersive
switch-on shock found by Coroniti [1971] as well as the
nondispersive switch-on shock reported by Kennel and
Edmiston [1988]. It should be noted that Osin [1989] has
reported a rather remarkable exact solution of the full set of
MHD equations, including Hall dispersion, which also was
shown to reduce to the asymptotic form found by Coroniti
[1971]. While Osin’s result is exact and is not limited by a
small amplitude constraint, it is an implicit solution and so
might be less tractable in analytical applications.

[s] The exact solution for the weakly dispersive and
weakly nonlinear Alfven switch-on shock presented here
may be of use in further analytical or numerical studies of
this shock. While the applicability of this shock solution is
constrained by the limits of the model equation discussed
above, the same equation without dispersion [Kennel et al.,
1990; Wu and Kennel, 1992] has been demonstrated [De
Stercks and Poedts, 1999a, 1999b] to be a valuable model in
illuminating the properties of small amplitude MHD shocks,
most notably with regard to the intermediate shock waves.
One salient application of an exact solution would be in a
study of the conditions of stability of the shock. While the
switch-on shocks observed in the Earth’s bow shock [Farris
et al., 1994] and in the numerical model of the bow shock
[De Sterck and Poedts, 1999a] were evidently stable under
the conditions of their observation, it is not clear, for
example, how they would be effected by interaction with
finite amplitude waves traveling parallel to the field or at an
angle to it [Kennel and Edmiston, 1988]. While analytical
arguments regarding stability can be made in the absence of
an exact solution [Hada, 1994], knowledge of an exact
solution has allowed for a more detailed understanding of
the stability of waves in some cases [Mjolhus, 1976; Laedke
and Spatschek, 1982; Terasawa et al., 1986; Ruderman,
1987; Mjolhus and Hada, 1990; Khabibrakhmanov and
Summers, 1995] and the solution presented here is a natural
starting point for a comparable analytical study of the
switch-on shock.

2. Derivation of Exact Solutions to the DNLSB
2.1. Weiss, Tabor, and Carnevale Method
[6] The solution method used in this paper is based on
work by Weiss, Tabor, and Carnevale (WTC) [Weiss et al.,
1983] who proposed a generalized Painleve analysis appro-
priate for the direct study of nonlinear partial differential
equations. The basis for this approach is an assumed
expansion for the solution of the form
u(x, ) = 6(x, 1) 3 o(x, 1),
j=0

J

where o(x, ?) is the singular manifold for the solution u(x, t).
It has been demonstrated [Clarkson and Cosgrove, 1987;
Cariello and Tabor, 1989] that useful solutions may be
found from self-consistent, truncated expansions of this
form even for nonlinear partial differential equations not
integrable by techniques such as the Inverse Scattering
Transformation [Ablowitz and Segur, 1985].

[7] As the DNLSB is a complex valued equation it is
convenient to study instead the pair of coupled equations

U + u— (uzv) = Fllyy

pw (4a)

Vi + a— (vzu) = FVyy,

B (4b)
where = R — iR. This set is equivalent to equation (1) with
u = v*. The truncation attempted is simply

u(x,t) = a(x,t)o(x, 1) (5a)

v(x, 1) = b(x, ) (x, )", (5b)
Upon placing this singular expansion in equation (2), the
existence of a solution requires the coefficients of the
various powers of &(x,t) to sum to zero. Balancing the most
singular of the resulting terms constrains € and 1) to be

R
e=—1/2—ip, n=-1/2+ip, withuzﬁ, (6)

Similarly, the conditions imposed on a(x, t), b(x, t) and ¢ (X,
t) at the various orders are

= 2 n2
ab = Ko, wherel(:—%:—RZI:L_::e (7)
cad, + a(a’h) = re[2a:0, + ad),, (8a)
nbd, + a(b’a) = Fe2byd, + bo),, (8b)
a; = Fay (9a)
by = Fby,. (9b)

Equation (7) can be used to simplify equations (8a) and (8b)
to yield

0 0
0, = 10,5 In(a) = 76, 5 In(b). (10)

Once again, using equation (7), this can be written as

d)t: _OLKd)xx‘ (11)

Substituting this expression for ¢, into equation (10) and
integrating gives a(x,t) and b(x,t) in terms of o,:

a(x,t) =f(0)(d.) " blx,1) =g(t)(6) ™",

where f(f)g(f) = K

(12)



Placing these expressions for a(x,t) and b(x,t) into equations
(9a) and (9b) yields
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Upon integrating equation (13) and ensuring compatibility
with equation (11), it is found that

(13)

O(x, 1) = cpexpler (x — aKeyt)] + ¢, (14)

where ¢;, ¢, and c5 are real constants.

2.2. An Exact Dispersive Switch-On Shock Solution
and Limiting Forms

[8] Finally, from equations (5a)(5b), (12), and (14), an
exact solution for the DNLSB (2) may be written as:

@)

2

B(x,1) = By [1 + loBi)/L] (15)

Far upstream, the field approaches the form (at t = 0)

B(x,1) = Boe /L ™/ for x — 400, (16)
which matches an asymptotic solution of the switch-on
shock found by Coroniti [1971]. In this region, the shock
width, L, can be defined by

R*+R?

L=—
RaB3

(17a)

and the wavelength of the oscillatory, upstream section of
the shock is given by

2 p2
R R (17b)

RaB2
where By is the transverse component of the magnetic field
in the downstream state. It can be seen that the number of
oscillations in the circularly polarized standing wave
upstream is proportional to the ratio of L to L or, more
simply, R/R. The accompanying figure shows plots of B,, 5.
and |B|? as a function of position at time t = 0 along with a
hodogram of B, and B..

[9] In the dispersion free limit, B(x,t) can be written as (at

t=20)

B(x,1)*= [1 +e2*/zr, (18)

with, in this case, L = %. This matches a solution found
by Kennel and Edmiston "[1988].

2.3. Singular Solutions of the DNLSB

[10] Last, two apparently nonphysical, singular solutions
are reported

(IZ—’%)

B(x,t) = By|1 — 2(x—eBi)/L] for (x — aBot) < 0 (19a)

R
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<

B(x,1) = By [6*2(”“351‘)@ - 1] for (x + aBot) < 0. (19b)

The divergence of the singular solutions in equation (19a)
and (19b) violates the small amplitude assumptions under
which the DNLSB equation was derived [Wyller and
Mjolhus, 1984]. As such, it is inferred that they are
nonphysical solutions.

3. Summary and Discussion

[11] It is not evident how to extend the WTC method to
find exact solutions for other Alfven shocks. It has been
used successfully to find solutions to nonlinear model
equations for a variety of physical systems, for example,
by Clarkson and Cosgrove [1987] and Cariello and Tabor
[1989], and it seems likely to be of use in space physics
applications in addition to the weakly nonlinear, weakly
dispersive switch-on shock found here.

[12] The exact solution for equation (15) for the disper-
sive Alfven switch-on shock is shown to reduce to two
previously known limiting cases [Coroniti, 1971; Kennel
and Edmiston, 1988]. The model equation on which this
solution is based can be derived from the one-dimensional,
dissipative MHD equations including Hall dispersion in the
limit of weak nonlinearity, weak dispersion, and wave
propagation at small angles to the upstream magnetic field
[Wyller and Mjolhus, 1984]. It does describe the mode
coupling between the intermediate and fast Alfven waves,
but not mode coupling with the sound wave, so that for 3 ~
2/v the two-mode description of the equation breaks down.
This means that the switch-on shock solution presented
above should be valid through most of the parameter regime
in which switch-on shocks are allowed with the exception
of the higher 3 end at 3 < 2/vy. Last, the source of dissipation
used in the model equation may be suspect in applications
to the solar wind.

[13] Within these limitations, the conditions for which the
shock structure was well understood were the cases without
dispersion [Kennel and Edmiston, 1988], resulting in a
planar shock, or an asymptotic solution of the shock
including the effects of dispersion [Coroniti, 1971], describ-
ing a circularly polarized wave standing upstream from the
shock. As shown above and in Figure 1, the solution
presented here provides the complete shock structure either
with or without dispersion.

[14] The switch-on shock has been observed in the
Earth’s bow shock [Farris et al., 1994] and in numerical
simulations of the bow shock [De Sterck and Poedts,
1999a]. As discussed by Farris et al. [1994], it seems
likely that the presence of this shock is the exception for the
Earth’s bow shock. It is also the case that given a field-
aligned flow [De Sterck and Poedts, 1999a], that the
switch-on shock is one fundamental means available to
the flow, in the switch-on shock parameter regime of
equation (1), to adapt topologically to the presence of an
object in its path. The observations of these authors provide
a motivation to develop a better understanding of the
physics of the switch-on shock and, for example, to clarify
its behavior and stability in the presence of other finite
amplitude waves, turbulence, or 3-D perturbations. For an
analytical study of these properties there are many methods
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Figure 1. The values used for dispersion, R, are shown at the top of each column. The value for
dissipation is taken to be 0.05. Other values are 3 = 0, a = 1/4, and Bo = 1. Note that the range of the
plots increases to the right as the value of R increases. The damping wavelengths, L, are 0.2, 0.4, 20.2,
and 320.2 for Figures la—1d, respectively. (a) Without dispersion, the shock is planar. With relatively
strong dispersion compared to damping, R/R > 1 as in Figures Ic and 1d, the shock has a circularly
polarized wave train standing upstream from it. The exact solution provides the complete shock structure
for these limiting cases as well as for intermediate values of dispersion as in Figure 1b.

available, some examples of which are cited above. A
natural starting point for such an analytical study is the
weakly dispersive, weakly nonlinear switch-on shock sol-
ution presented here.
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