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There is a significant body of literature related to the analytic modeling
of Alfven waves in the solar wind which takes dispersive
magnetohydrodynamics as an idealized basis. In this context, the derivative
nonlinear Schrodinger (DNLS) equation has been found by several authors [I-
5| to describe the evolution of small amplitude Alfven waves.
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where b(x,t) is the complex representation of the magnetic field perpendicular
lo the direction of propagation, x. Although the DNLS neglects a rich variety
of mechanisms which affect the propagation of Alfven waves in the solar
wind, it does provide a powerful tool for studying their underlying nonlinear
behavior.

The value of the DNLS as a theoretical basis for studying Alfven waves
is in large part due to its integrability through the inverse scattering
transformation (IST). Kaup and Newell [6] found the appropriate Lax pair and
developed the IST for so-called vanishing boundary conditions with b(x) — 0
for x—» %%, These boundary conditions are appropriate for a localized
perturbation travelling parallel to a static magnetic field. Kawata and Inoue
[7] developed the IST with non-vanishing boundary conditions appropriate for
oblique Alfven waves and Kawata et al. [8] went on to treat the case of a
localized perturbation travelling on a circularly polarized carrier wave.
Lastly, Prikarpatskii [9] has dealt with the DNLS under periodic boundary
conditions.

While for applications to space physics the IST is a particularly
promising approach to the DNLS, the equation itself is amenable to other
forms of integrability tests. For example, Mikhailov et al. [10] list it amongst a
class of equations which pass a test for integrability based on a symmetry
approach. By writing two Hamiltonian decompositions of the DNLS, we show
here that the DNLS also satisfies a beautiful formalism for integrable systems
set forth by Magri [11]:
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and M and L are symplectic operators with respect to the bilinear form:
<f,g7=L’. [fg+fgldx
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This immediately leads to the recursion operator, L'M, for the infinite
sequence of conservation laws of the DNLS. g \

An advantage of the IST, over other techmqnes_ for tb'e ‘a.nalync ‘Il.udy of
the DNLS, is that it allows one to consider the relation ‘of initial conditions to
the formation of solitons. This has been done by Ichikawa and Abe [12]
Mjolhus [13] and Dawson and Fontan [14] for the case of para}lel Alfven
waves. Numerical studies of soliton formation have also been carried out for
this case by a number of authors [15-19]. In these works, the modulationl
instability, discussed in an early paper by Mjolhus [20], appears as a useful
criterion for the formation of Alfven solitons.

The importance of non-vanishing boundary conditions for space physics
applications has been stressed [21,22] due to the possible existence of obligue
Alfven waves or the possible refraction of initially parallel Alfven waves [23].
As noted by Kawata and Inoue |7], under non-vanishing boundary conditions
the DNLS has a two-parameter family of solitons corresponding to a set of
discrete complex eigenvalues of the scattering problem and a one-parameler
family whose solitons are either bright or dark and correspond to a set of
discrete real eigenvalues. Of these soliton families, only the two-parameter
family continues to exist for parallel propagation.

The existence of the one-parameter family is connected to the unigue
phy.sical setting of oblique Alfven wave propagation [5,24,25]. To sketch this
setting, we note that the DNLS describes the mode coupling between the
Alfven and magnetosonic waves. For strictly parallel propagation, the
underlying MHD phase speeds of these two waves coincide. As the angle of
propagation is increased, however, the underlying wave speeds will separate
3';33'::'“5 gradually diminish the role of mode coupling in the nonlinex
dis ':i’gﬁ’“ f°fh these waves. Even so, the DNLS provides an accurat
s ge nd‘i) the Alfven and magnetosonic waves in this oblique regime. In
v ;educ?: mﬂgmf:n th: choice of waveframe, the DNLS has been shown [52¢]
MKV descriot :l’ :e KdV description of the magnetosonic wave [26] or the
araRite Dil)\ll?s of the Alfven wave [27]. Moreover, the velocity of a o

soliton is not only bounded by the underlying MHD

magnetosonic and Alfven wave speed i peed approac : =
Mmagnetosonic or the Alfven i S ? MKV 5

respectively [5]. speed, it will deform into a KdV or MKdV solitn
The f i 3
conditions ha(smgea:-.onc of Alfven solitons under non-vanishing boundary

i onsidered by Hamilton, K i through
a , Kennel and Mjolhus [25] £
n analytic study of the scattering data for a set of initial ézxd prtl:ﬁles. It is
unambiguousi 01?:_?:"3'!“?““' solitons are formed in trains which ca

J identified as either Alfvenic (with the slowest soliton speed

176



i Alfven speed) or magnetosoni i :
approaching the . gnetosonic (with the fastest solit
spproaching the magnetosonic speed). The solitons in a given traiz ‘a(:-: :m‘:
oll dark (rarefactive) or all bright (compressive) and, if both an Alfvenic and
magnetosonic train are formed from a given !

. : initial profile, then the faste
sliton in the Alfvenic train must be slower than any soliton of t}:

magnetosonic train. It was found, though, that the eigenvalues of the fastest
Alfvenic soliton and the slowest magnetosonic soliton may coalesce if the
wavenumber of the initial profile is large enough make a section of the profile
modulationally unstable.  The coalescence of two real eigenvalues forms a
degenerate and structurally unstable soliton which will bifurcate into a two-
parameter soliton as the wavenumber of the initial profile is increased. More
detailed observations of the formation of Alfven solitons are contained in
reference [25]. The Gelfand-Levitan equations for the degenerate one-
parameter soliton have been solved in reference [28].
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