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AJfven Solitons and the DNLS Equation 

R.L. Hamilton1·•, C.F. Kennell ·•, and E. Mj¢lhus2 

lJnstitute for Theoretical Physics, University of California 
Santa Barbara, CA 93106, USA ' 

2Institute for Mathematical and Physical Sciences, University of Troms!l}, 
Trom~. Norway 

•permanent address: ~titut? for. Geophysics and Planetary Physics, 
Department of Phys1cs, Uruvers1ty of California, Los Angeles, USA 

There is a signifi~ant body of literatur~ related . to the analytic modeling 
of Alfven wav~s tn t~e .solar .w•nd whtch takes dispersive 
magnetohydrodynamtcs as an tdealtzed bas ts. l n this context, the derivative 
nonlinear Schrodinger (DNLS) equation has been found by several authors [1-
5] to describe the evolution of s mall amplitude Alfven waves. It may be 
scaled to the form 
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where b(x,t) is the complex representation of the magnetic field perpendicular 
to the direction of propagation, x. Although the DNLS neglects a rich variety 
of mechanisms which affect the propagation of Alfven waves in the solar 
wind, it does provide a powerful tool for studying their underlying nonlinear 
behavior. 

The value of the DNLS as a theoretical basis for studying Alfven waves 
is in large part due to its integrabi lity through the inverse scattering 
transformation (1ST). Kaup and Newell 161 found the appropriate Lax pair and 
developed the 1ST for so-called vanishing boundary conditions with b(x) -+ 0 
for x ... ± oo . These boundary conditions are appropriate for a localized 
perturbation travell ing parallel to a static magnetic field. Kawata and Inoue 
17] developed the 1ST with non-vanishing boundary conditions appropriate for 
oblique Alfven waves and Kawata et al. 18 J went on to treat the case of a 
localized perturbation travelling on a circularly polarized carrier wave. 
Lastly, Pnkarpatskii (9] has dealt with the DNLS under periodic boundary 
condittons. 

While for applications to space physics the 1ST is a particularly 
promising approach to the DNLS, the equation itself is am~na~le to other 
forms of integrability tests. For example, Mikhailov et al. LlOJ hsl It amongst a 
class of equations which pass a test for integrability based on a symmetry 
approach. By writing two Hamiltonian decompositions of the. DNLS, we show 
bere that the DNLS also satisfies a beautiful formalism for Integrable systems 
SCI forth by Magri [ 1 I]: 
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where 2-
~(b) =b b +ib 

and M and L are symplectic operators with respect to the bilinear form: 

(f,g ) =~-
00

[fg +fg]dx 
+ 00 

1 

L-•M, ~ This immediately leads to the recursion operator, •Or the infinite 
sequence of conservation laws of the DNLS. . 

An advantage of the 1ST, over other techmques for the analytic study of 
the DNLS, is that it allows one to consider the relation _of imtial conditions to 
the formation of solitons. This has been done by lchtkawa and Abe [121 , 
Mjolhus [ 13] and Dawson and :on tan [14~ for the ca.se of parallel Alhen 
waves. Numerical studies of sohton format1on have also been earned out for 
this case by a number of authors [15-19]. In these works, the modulational 
instability, discussed in an early paper by Mjolhus [20], appears as a useful 
criterion for the formation of AI fven solitons. 

The importance of non-vanishing boundary condiuons for space phys1cs 
applications has been stressed [21,221 due to the possible existence of oblique 
Alfven waves or the possible refraction of initially parallel Alfven waves [23[. 
As noted by Kawata and Inoue [7], under non-vanishing boundary conditions 
the DNLS has a two-parameter family of solitons corresponding to a set of 
discrete complex eigenvalues of the scattering problem and a one-parameter 
family whose solitons are either bright or dark and correspond to a set of 
discrete real eigenvalues. Of these soliton families, only the two-parameter 
family continues to exist for parallel propagation. 

The existence of the one-parameter family is connected to the uoique 
phy~ical setting of oblique Alfven wave propagation [5,24,25]. To sketch this 
setting, we note that the DNLS describes the mode coupling between tbe 
Alfven and magnetosonic waves. For strictly parallel propagation, the 
underlyi~g ~H~ phase speeds of these two waves co1nc1de. As the angle of 
propagatiOn IS 10creased, however, the underlying wave speeds will sepmte 
and thus gradually diminish the role of mode coupling in the nonlinear 
devel_op_ment of these waves. Even so, the DNLS provides an accurate 
descnptton of the Alfven and magnetosonic waves in this oblique regime. In 
fact , depending_ on the choice of waveframe the DNLS has been shown [5,24] 
to reduce to etther th KdV d · · ' · the MKdV . . e escnptton of the magnetosomc wave [26] or 

descnptJOn of the Alfven wave [27]. Moreover the velocity of a one· 
parameter _DNLS soliton is not only bounded by' the underlying MHD 
magnetoson.1c and Alfven wave speeds but as its speed approaches either the 
magnetosoruc or the Alf . ' . . 
respectively 151. ven speed, 1t Wtll deform into a KdV or MK.dV soliton 

.. The formation of Alfven co d t soli tons under non-vanishing boundary 
n 

1 
tons has been considered by Hamilton Kennel and Mjolhus [25] tbrou~b 

~~u~~aly:~catstudy of the scattering data for ~ set of imtial field profiles. It IS 

unambiguously 
0~:-r:ra~f7tedr sol_itons are formed in trains which can 

en 1 le as etther AI fvenic (with the slowest soliton speed 
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approacb~ng the Alfven sp~d) or magnetosoni~ (with the fastest soliton speed 
approaching ~e ~g)netoso~IC b ~p~d)(. The s~htons in a given train are either 
all dark (~e ac~ve or a ng t compr:ssiVe) and, if both an Alfvenic and 
magnetos~ruc traJA\fare . forme~ from a given initial profile, then the fastest 
soliton m . the . vemc tra1n must be slower than any soliton of the 
magnetosomc. tra1n. It was found, though, that the eigenvalues of the fastest 
Alfvenic soliton an~. ~he slowes~ magnetosonic soliton may coalesce if the 
wavenumber of the 1ruhal profile 1s large enough make a section of the profile 
modulationally unstable. The coalescence of two real eigenvalues forms a 
degenerate and structurally unstable soliton which will bifurcate into a two­
parameter soliton as the wavenumber of the initial profile is increased. More 
detailed observations of the formation of Alfven solitons are contained in 
reference (25). The Gelfand-Levitan equations for the degenerate one­
parameter soliton have been solved in reference [28]. 
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