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Summary. Evaporative water loss (EWL), oxygen con
cumption (V0 ), and body temperature (Tb) of Anna's 
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Hummingbirds (Calypte anna; ca. 4.5 g) were measured 
at combinations of ambient temperature (T J and water 
vapor density (Qva) ranging from 20 to 37 °C and 2 to 
27 g · m- 3

, respectively. The EWL decreased linearly 
with increasing eva at all temperatures. The slopes ofleast 
squares regression lines relating EWL to Qva at different 
temperatures were not significantly different and av
eraged -0.50mg H 20·m- 3 ·g- 2 ·h- 1 (range: -0.39 
to -0.61). Increased Qva restricted EWL in C. anna more 
than has been reported for other endotherms in dry air. 
The percent of metabolic heat production dissipated by 
evaporation (HJHm) was lower than that of other birds 
in dry air, but higher than that for other birds at high 
humidity when T.<33 °C. When T.>33 °C the effect of 
humidity on H0/Hm was similar to that in other birds. 
Calypte anna might become slightly hyperthermic at 
T.> 37 °C, which could augment heat transfer by increas
ing the Tb-Ta gradient. Body temperature for C. anna 
in this study was 43 °C (intramuscular) at T.s between 25 
and 35 °C, which is above average for birds. It is esti
mated that field EWL is less than 30% of daily water loss 
in C. anna under mild temperature conditions ( < 35 °C). 

Key words: Thermoregulation - Water regulation - En
dothermy - Climatic adaption - Trochilidae 

Introduction 

The rate at which body heat is dissipated by evaporation 
is partially dependent upon the difference in temperature 

* Current address: Department of Biology, George Fox College, 
Newberg, Oregon 97132 USA 

Abbreviations: BMR basal metabolic rate; EWL evaporative water 
loss; fl. evaporative heat loss; flm metabolic heat production; 
fl./flm percent of metabolic heat production dissipated by evapora
tion; Qva ambient water vapor density; Qvs body surface water vapor 
density; RMR resting metabolic rate; T. ambient-temperature; Th 
body temperature; Td dew-point temperature; TNZ thermoneutral 
zone; y, body surface temperature; Vco 2 carbon dioxide produc
tion; V02 oxygen consumption 

and eva between the animal's surface and the surrounding 
air (Monteith 1973; Campbell 1977). The effect of tem
perature on EWL in endotherms is well documented and 
has been reviewed elsewhere (Chew 1965; Calder and 
King 1974; Skadhauge 1981; Dawson 1982). Less in
formation is available on the effect of humidity, however, 
because of the difficulty in conducting EWL experiments 
in the laboratory under conditions of controlled eva (La
siewski et al. l 966b; Bernstein et al.) 977; Welch 1980). 

Most studies of EWL have not been concerned with 
the effect of humidity on EWL and have relied on mea
surements taken in dry air (e.g., Bartholomew and Daw
son 1953; Chew 1955; Bernstein 1971; Lee and Schmidt
Nielsen 1972). Because air in the natural environment is 
not dry, measurements of EWL in dry air conditions 
may not reflect an animal's actual thermoregulatory abil
ity during heat stress. In a few studies, measurements of 
EWL have been made under various humidity conditions 
(e.g., Lasiewski et al. 1966b; Proctor and Studier 1970; 
Richards 1976; Edwards and Haines 1978; Welch 1980; 
Webster and King 1987). These studies show that when 
eva is high, EWL is low in both mammals and birds at all 
temperatures. In pigeons ( Columba livia), for example, 
EWL at high humidity (l?va=25 g · m- 3

) is less than 50% 
of that at low humidity (l?va<5 g · m- 3

) (Webster and 
King 1987). Similarly, deer mice ( Peromyscus manicula
tus) measured at 30 °C show a four-fold decrease in EWL 
over the same range of humidities (Edwards and Haines 
1978). These data suggest that understanding the effect 
of humidity on EWL is important for accurate assess
ment of water use and thermoregulation by free-living 
animals. 

The relative impact of high humidity on thermoregu
lation and water regulation in homeotherms of different 
body size is uncertain. Measurements have been made on 
mammals ranging in size from ca. 7.5 g [little brown bat, 
Myotis lucifugus; Proctor and Studier (1970)] to ca. 
1.1 kg [prairie dog, Cynomys ludovicianus; Welch (1980)]. 
No measurements are available for birds smaller than 
42 g [painted quail, Excalfactoria chinensis; Lasiewski 
et al. (1966a)J. With the exception of the little brown bat, 
measurements of the effect of humidity on EWL in 
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mammals have concentrated on larger species, pre
sumably because of the ease with which they can be 
studied. However, the effect of humidity on smaller ho
meotherms may be more pronounced, because of their 
high levels of metabolic heat production and the rapid 
rate at which they gain heat from the environment at high 
temperatures. 

Although the high surface-to-volume ratio of small 
homeotherms results in high rates of mass-specific EWL, 
there is some uncertainty as to whether EWL can dissi
pate enough heat for maintenance of body temperature 
when other avenues of heat loss (e.g., conduction and 
convection) become ineffective, such as when Ta~ Tb 
(Calder and King 1974). Costa's hummingbirds (Calypte 
cos ta), for example, can dissipate only 62 % of their 
metabolic heat production at 39.5 °C in dry air (Lasiews
ki 1964), which is less than the percent heat dissipated by 
many other birds under similar temperature conditions 
(Calder and King 1974). Because most hummingbirds 
live at least part of the year in the tropics, where tem
perature and humidity can be high (e.g., Evans 1939; 
Janzen 1976), a significant reduction in EWL due to high 
humidity could make thermoregulation difficult even 
under moderate temperature conditions. 

This study examined the effect of temperature and 
humidity on EWL in Anna's hummingbird (Calypte 
anna; ca. 4.5 g). Calypte anna inhabit many regions of 
the southwestern United States where Ta can exceed 
40 °C during the summer months. Although regions in
habited by C. Anna during the summer are generally not 
characterized by high humidity, the results of this study 
will provide useful information on the limits of ther
moregulatory ability, and behavioral and metabolic ad
aptations of tiny endotherms to thermal stress. Calypte 
anna was chosen for this study because of its abundance 
and because much information on their physiology and 
ecology is already available (e.g., Pearson 1950, 1954; 
Bartholomew et al. 1957; Stiles 1971, 1973, 1982; Bart
holomew and Lighton 1986; Powers 1987; Powers and 
Nagy 1988). 

Materials and methods 

Animals. Using mist nets, 10 male C. anna were captured at the 
Tucker Wildlife Sanctuary, Orange County, California in Decem
ber 1987 (California Fish and Game permit no. 2135). The birds 
were transported to the University of California, Davis, and housed 
individually in 1.0 x 0.5 x 0.5 m cages at a controlled temperature 
(23 ±I °C) and photoperiod (12L: 12D) for at least 2 months prior 
to measurement. Birds were fed a purified liquid diet containing 
19.9% carbohydrate, 0.9% protein, 0.9% fat, and 2.1 % essential 
vitamins and minerals ad libitum (Brice and Grau 1989). All birds 
maintained mass over the course of the study. 

Metabolism measurements. Protocol. Measurements of V0 ,, Vc0 ,, 

and Td were made with an open-circuit, positive-pressure res
pirometry system. Body mass was measured to the nearest 0.01 g 
before and after the respirometry trials with an electronic balance 
(Fisher model 7204A). The birds were fasted for a least 2 h prior 
to metabolic measurements and were placed in the metabolism 
chambers 1 h before data collection. Two birds were monitored 
simultaneously in separate metabolism chambers. During each run 
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the birds typically spent 2.5-3.0 h in the metabolism chambers. 
Temperature and humidity conditions for a given metabolic trial 
were chosen randomly. At least six birds were measured under each 
set of temperature and humidity conditions. Individual birds were 
given at least 2 days of rest between metabolism trials. Birds were 
not run iftheir mass was more than 10% below their initial capture 
mass. Metabolic trials in which birds did not achieve a stable V0 , 

or EWL for 30 min, or entered deep torpor, were discarded. 

System design. Glass jars (2.51) were used as metabolism chambers 
and teflon tubing was used throughout the metabolism system to 
avoid errors due to water absorption through materials such as 
Plexiglas (Bernstein 1971; Welch 1980). The hummingbirds perched 
on a wooden dowel, at rest and in the dark, above a layer of mineral 
oil used to trap excreta. The T. inside the chamber was monitored 
with a 24-gauge Cu-Cn thermocouple and recorded to the nearest 
0.1 °C with a Sensortek Bat-12. Thermocouples were calibrated 
against a National Bureau of Standards certified thermometer. 

Flow of COrfree air was regulated at a controlled humidity 
through the metabolism chamber at 500 ml · min - 1 (STP) by plac
ing a Brooks model 5815 mass flow controller, previously calibrated 
with a bubble meter (Levy 1964), upstream from the chamber. 
Because the flow controller was calibrated with dry air, air flow 
rates were corrected for humidity by subtracting the flow rate of 
water vapor from the total flow rate. Correcting for the water vapor 
content of the air stream is necessary because water vapor contrib
utes to the total air flow through the chamber, thus reducing the 
amount of oxygen in the air stream. The water content of air both 
upstream and downstream from the metabolism chamber was de
termined by dew-point hygrometry. Outlet air passed through an 
infrared C02 analyzer (Beckman model 864 equipped with an 
optical filter to eliminate interference due to water vapor), through 
a dew-point hygrometer (General Eastern model l lOODP) to mea
sure the water content, then through U-tubes containing soda lime 
and Drierite to remove C02 and water vapor, and finally to an 
oxygen analyzer (Applied Electrochemistry model S-3A). Prior to 
each run, the C02 analyzer was calibrated with certified gas stan
dards (Matheson Gas Products, Inc. Secaucus, New Jersey, USA) 
and the oxygen analyzer with dry C02 -free room air assuming an 
oxygen content of20.95%. Accuracy of the hygrometer was verified 
gravimetrically using the methods of Bernstein et al. (1977). Data 
recording and analysis were done using BBC Acom and Zenith 
MS-DOS microcomputers as described by Lighton (1985). Output 
from the analyzers was sampled at 3-s intervals. The fractional 
concentration of 0 2 and C02 of inlet and outlet air was measured 
to the nearest 0.005%. Oxygen consumption was calculated from 
Eq. 2 of Hill (1972) and C02 production from the equation in 
Weathers et al. (1980). Heat production was calculated from V02 
assuming 11 0 2 =20.1 kJ and 11 0 2 • h- 1 = 5.5824 W. The Td of 
inlet and outlet air was measured to the nearest 0.1 °C. The value 
of i?va for a given Ta was determined from hygrometric tables (List 
1951). Evaporative water loss was calculated using Eq. I and 6 of 
Bernstein et al. (1977). Heat loss by evaporation was calculated 
assuming I g H 2 0=2.428 kJ and I g H2 0 · h- 1 = 0.67454 W. Be
cause T dis defined at a constant pressure, a water manometer was 
connected to the respirometry system to monitor changes in system 
pressure and a mercury barometer used to measure atmospheric 
pressure during each metabolic trail. All measurements of T d, V 0 , 

and Vco, were corrected to STPD. 
2 

Body temperature. Body temperature (Tb) was measured intramus
cularly with an Omega hypodermic Cu-Cn thermocouple probe 
(30-gauge) inserted into the pectoralis muscle. Measurements were 
considered valid only if they were made within 60 s after opening 
the door to the temperature control cabinet, and if the bird did not 
flap its wings. Because repeated measurements of Tb in this manner 
is potentially damaging to the birds, Tb was measured only under 
dry air conditions. 

Statistics. The effect of varying humidity at different temperatures 
was analyzed with linear least-squares regression. Regressions were 
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calculated from pooled data for all birds used in the study. Al
though pooling data in this manner is not ideal, it is necessitated 
by limitations in the number of animals that can be used in this type 
of study. Error is minimized by the fact that each bird contributed 
equally to each regression. Slopes and intercepts of regressions 
calculated for different conditions were compared using analysis of 
covariance (Zar 1974). Two-sample Student's t-tests were used to 
compare means. Results of statistical tests were considered signifi
cant at P<0.05. Data are given as mean ± 1 SD. 

Results 

Body temperature and metabolic rate 

Body temperature remained fairly constant between 25 
and 37 °C, averaging 42,9±0.75 °C (Fig. 1). Mean Tb 
was slightly elevated to 44.3 ± 0.60 °C at Ta= 40 °C, al
though the increase was not statistically significant. 
At Ta= 20 °C, Tb was highly variable, averaging 
42.0 ± 2.0 °C (Fig. 1 ). Median Tb was similar at all tem
peratures between 20 and 37 °C (range 42.0--43.1 °C), but 
was highest at 40 °C ( 44. 7 °C) (Fig. 1 ). 

Under dry conditions, the TNZ is narrow and appears 
to be located between about 33 and 37 °C during the 
active phase of the daily cycle (Fig. 1 ). The active phase 
metabolic rate in the TNZ is about 35 W · kg- 1 . Meta
bolic rate increases steadily with decreasing temperature 
below 33 °C, except at 20 °C where a slight decrease in 
metabolic rate was observed. Average metabolic rate at 
40 °C was about 43 W · kg- 1

, but individual measure
ments were highly variable (Fig. 1 ). Metabolic rate under 
humid conditions did not differ significantly from that 
observed in dry air. 

Mean mass for birds used in this study was about 
4.5 g, ranging from a minimum of 3.89 g to a maximum 
of 5.30 g. 

Evaporation and latent heat loss 

The EWL (milligrams per gram per hour) decreased 
linearly with increasing l!va at all temperatures (Fig. 2). 
Correlations for the relationship between EWL and l!va 
were statistically significant at all temperatures (Table 1). 
Slopes of the regression lines (milligrams of water per 
cubic metre per grams squared per hour) ranged from 
-0.39 to -0.61(Table1). All slopes differed significant
ly from 0, but were not significantly different from each 
other. The simultaneous effects of temperature and eva 
on EWL are described by the multiple regression equa
tion EWL=2.314-0.490 eva+0.427 T. (Szyx=2/72, 
r2 = 0.63, P < 0.05). The behavior of this model over the 
range of temperature and eva used in this study is illus
trated by the three-dimensional surface plot in Fig. 3. 

Similarly, He/ flm decreased linearly with increasing eva 
(Fig. 4). Correlations for the relationship between fle/flm 
and eva were statistically significant at all temperatures 
(Table 2). Slopes of the regression lines ranged from 
-0.49 to -0.93 m3 · g- 1 (Table 2) and were significantly 
different from each other (F=4.02; df = 5165; P<0.05), 
leading to rejection of the null hypothesis that the lines 
were parallel. Rejection of the null hypothesis appears to 
have resulted from a change in slope between 30 and 
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Table 1. Least-squares linear regressions (y =a+ bx) of evaporative 
water loss (mg· g- 1 • h- 1) on vapor density (g · m- 3) for Calypte 
anna 

T. Y-Intercept Slope SE Estimate SE Slope 
(°C) a b syx Sb r2 

20 10.03 -0.39 1.82 0.08 0.53• 
25 15.03 -0.59 3.10 0.12 0.51• 
30 13.43 -0.42 1.97 0.06 0.62• 
33 16.71 -0.53 2.61 0.06 0.69• 
35 15.07 -0.45 2.20 0.05 0.79• 
37 21.86 -0.61 2.99 0.08 0.70• 

• Coefficient of determination is significant (P< 0.05) 

Table 2. Least-squares linear regressions (y=a+ bx) of fI.ffim (%) 
on vapor density (g · m- 3 ) for Calypte anna 

T. Y-Intercept Slope SE Estimate SE Slope 
(OC) a b syx Sb ,2 

20 11.78 -0.51 2.32 0.10 0.54• 
25 16.55 -0.57 3.37 0.13 0.45• 
30 19.16 -0.48 2.93 0.09 0.49• 
33 30.68 -0.98 5.03 0.11 0.68• 
35 30.27 -0.87 4.56 0.10 0.77• 
37 37.62 -0.93 3.74 0.10 0.78• 

•Coefficient of determination is significant (P<0.05) 
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33 °C. No statistical difference exists between the slopes 
of regression lines calculated for data at 20, 25, and 30 °C, 
or for regression lines calculated for data at 33, 35, and 
37 °C. The mean slope of regressions between 20 and 
30 °C was - 0.52 ± 0.05. The mean slope of regressions 
between 33 and 37 °C was -0.91±0.03. All slopes dif
fered significantly from 0. The simultaneous effects of 
temperature and Qva on H0 /fJm are described by the multi
ple regression equation H0 / fJm = T a(0.026 Ta - 0.025 evJ 
(Szyx = 4.05, r2 = 0.95, P< 0.05). The behavior of this 
model over the range of temperature and f?va used in this 
study is illustrated by the three-dimensional surface plot 
in Fig. 5. 

Discussion 

Effect of temperature. Mass-specific EWL rates of heat
stressed C. anna are the highest measured for any en
dothermic vertebrate. In dry air, mean EWL for C. anna 
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Fig. 5. Three-dimensional surface plot describing the affect of tem
perature and water vapor density (g · m - 3 ) on the percent of meta
bolic heat production dissipated by evaporation (il./ ilm) 

is 37.1±11.7mg H 20 · g- 1 
· h- 1 at 40 °C. This is 9.3% 

higher than that measured for 3.5-g Costa's humming
birds [ Calypte costae; Lasiewski (1964)] and 30 % higher 
than that measured for the 9.5-g dusky munia [Lonchura 
fuscans, Weathers (1977)] and 28-g Cassin's finch [Car
podacus cassinii; Weathers et al. (1980)], which have the 
highest EWL recorded for endothermic vertebrates other 
than hummingbirds. 

Area-specific EWL can be estimated from mass
specific EWL by allometry [external surface area 8.11 
cm2 

• g0
·
67

; Walsberg and King (1978) Eq. 2]. Area
specific EWL for C. anna is estimated to be 
7.51 mg· cm- 2 · h- 1 at 40 °C. This is 17% greater than 
the 6.27 mg · cm - 2 • h - 1 estimated for C. costae and 10 % 
greater than the 6. 73 mg · cm - 2 • h - i estimated for 
L. fuscans, but 28 % lower than the 9.62 mg ·cm - 2 

· h- 1 

estimated for C. cassinii. These values show no clear 
relationship between area-specific EWL and body mass. 
However, the method used above to calculate area
specific EWL is sensitive to errors in the estimation of 
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Table 3. Slopes of regression lines relating evaporative water loss (mg · g-- 1 · h-- 1
) to ambient water vapor density (g · m -- 3

) in various species 
of birds and mammals 

Species Mass Mean Minimum• Maximum• Temperaturesb Source 
(g) slope slope 

Birds 

Calypte anna 4.5 -0.50 -0.39 
Excalf actoria chinensis 42.7 -0.08 -0.07 
Columba livia 472.9 -0.12 -0.09 
Gallus domesticus 2040.0 -0.10 -0.09 

Mammals 
Peromyscus maniculatus 16.0 -0.24 -0.15 
Gerbillurus paeba 27.0 -0.20 
Mus musculus 32.0 -0.11 -0.11 
Rhabdomys pumilo 49.0 -0.21 
Desmodillus auricularis 64.0 -0.11 
Cynomys ludovicianus 1060.0 -0.03 -0.QJ 

• Minimum and maximum refer to the highest and lowest values 
calculated for the slopes of regression lines relating evaporative 
water loss with water vapor densitiy without regard to temperature 

surface area, and thus should be considered only a gross 
approximation. 

Although C. anna has a high rate of EWL, its ability 
to thermoregulate by evaporation appears to be limited 
compared with that of other endotherms. The fJm for 
C. anna is also high (Fig. 1), twice that predicted from 
body mass [Aschoff and Pohl (1970), equation for active 
phase]. The high fJm exceeds H0 even at 40 °C. At 40 °C, 
C. anna was able to dissipate only 58.6% of its fJm via 
EWL. This is significantly less than the H0 /Hm ratio 
predicted [72.8%; Calder and King (1974); Fig. 16] 
(t=2.33, df= 16, P<0.05). The similiarity of H0/Hm for 
C. anna and that measured for Costa's hummingbird 
(Lasiewski 1964) suggests that evaporative heat loss 
might not be as effective in hummingbirds as it is in other 
birds. 

Because of their low H0/Hm ratio, hummingbirds need 
other means of dissipating metabolic heat if they are to 
control Tb at high T •. Calypte anna could solve this 
problem by simply maintaining a higher Tb' which would 
enhance dry heat transfer (i.e., convection, conduction, 
and radiation). Hyperthermia in response to elevated T. 
is common in birds, and it often begins within the TNZ 
(Weathers 1981). The relationship between T. and Tb for 
C. anna is difficult to analyze, because the sample sizes 
in this study are small (n = 4-6). However, Tb in C. anna 
appears to follows a pattern similar to that observed in 
other birds; Tb was about 43 °C when T. was between 25 
and 37 °C, and increased to about 44 °C when T. was 
40 °C (Fig. 1 ). Thus, if Tb measurements in this study are 
accurate (see below), then C. anna maintained a favor
able gradient between Tb and T. even at Ta= 40 °C. 

At 20° C, mean Tb was lower than at higher T., but 
values for individual birds were highly variable (Fig. 1 ). 
Although measurements of Tb were not made simul
taneously with measurements of metabolic rate, the low
er mean Tb corresponds with the low metabolic rate 
exhibited by C. anna at 20 °C. Metabolic rate of C. anna 

slope (°C) 

-0.61 20---37 This study 
-0.08 25-32 Lasiewski et al. (1966b) 
-0.14 20--30 Webster and King (1987) 
-0.11 20-35 Richards (1976) 

-0.35 20--35 Edwards and Haines (1978) 
23 Christian (1978) 

-0.12 23-35 Edwards and Haines (1978) 
23 Christian (1978) 
23 Christian (1978) 

-0.07 10--40 Welch (1980) 

b Minimum and maximum temperature at which the relation of 
EWL to water vapor density was measured 

at 20 °C was 57 .8 W · kg-- 1, whereas the predicted meta
bolic rate, based on a thermal conductance of 
2. 795 w . kg-- 1 . 

0 c-- 1 [predicted by the equation of 
Aschoff (1981)] and a daytime RMR within the TNZ of 
36 W · kg-- 1 , is 72.3 W · kg-- 1 , a difference of 20. l % 
(Fig. I). The metabolic rate measured at 20 °C may 
indicate the use of hypothermia. Assuming a Q 10 of 4.1 
(Lasiewski 1963) and a normal Tb of 43 °C, the observed 
metabolic rate at 20 °C would result from a reduction of 
less than 2 °C in Tb· The resting night-time metabolic rate 
of normothermic rufous hummingbirds ( Selasphorus 
rufus) at 20 °C is about 59 W · kg-- 1 (Hiebert 1990), 
similar to the metabolic rate measured for C. anna in this 
study. This is much higher than the approximate value 
of 8.4 W · kg-- 1 exhibited by S. rufus in deep torpor 
(Hiebert 1990). However, because Hiebert (1990) did not 
measure Tb in normothermic birds, and because Tb mea
surements in this study are questionable, the possible use 
of limited hypothermia by C. anna at 20 °C cannot be 
discarded. During this study, deep torpor was observed 
only three times in C. anna run at 20 °C. 

Effect of humidity. The EWL in C. anna decreases with 
increasing humidity (Fig. 2). Although the effects of 
humidity on animal EWL are not well studied, the avail
able data suggests that EWL in C. anna is more sensitive 
to humidity than is the case for other species. The slope 
of the relationship between EWL and l!va for C. anna is 
2.1-16.7 times greater than that observed for other en
dotherms (Table 3). The larger slope is strictly a function 
of i?va because slopes of the regression lines describing the 
effect of llva on EWL did not differ between temperature 
conditions (Fig. 2). This indicates that the effects of l!va 
on the slope of the regression lines are independent of T •. 

The physical properties that determine EWL are the 
water vapor density gradient between the evaporating 
surface (i.e., skin or lungs) and the air (Qvs - Qv.), the 
bird's resistance to water vapor diffusion, and ventilation 
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Table 4. Slopes of regression lines relating the ratio of evaporative heat dissipated to metabolic heat produced (H./Hm) to ambient water 
vapor density (g · m- 3) in various species of birds and mammals 

Species Mass Mean Minimum• Maximum• Temperaturesb Source 
(g) slope slope 

Birds 
Calypte anna 4.5 -0.52 -0.48 
Calypte anna 4.5 -0.91 -0.87 
Excalfactoria chinensis 42.7 -1.30 -0.88 
Columba livia 472.9 -1.25 -0.95 

Mammals 
Peromyscus maniculatus 16.0 -0.67 -0.57 
Mus musculus 32.0 -0.47 -0.34 

• Minimum and maximum refer to the highest and lowest values 
calculated for the slopes without regard for temperature and humid
ity conditions 

rate (Monteith 1973; Campbell 1977; Webster et al. 
1985). The term Qvs - eva is a function of ambient humid
ity and T,. It has been postulated that some birds have 
the ability to alter their skin resistance to cutaneous 
evaporation through structural changes in the epidermis, 
changes in blood flow to the skin, or changes in the level 
of hydration of the keratin layer of the skin (Webster et 
al. 1985). A bird that has shown some ability to alter 
cutaneous resistance to water vapor diffusion is the pi
geon [Columbia livia; Webster et al. (1985)]. At high 
temperatures, a few C. anna in this study spread their 
retrices and exposed a bare patch of skin around the 
cloaca. If this area is highly vascularized it might serve 
as a means of reducing resistance to water vapor dif
fusion. 

Changes in ventilation rate and resistance to water 
vapor diffusion at different Qva in C. anna can be deter
mined by plotting EWL as a function of avs - Qva· The 
contribution of these factors to EWL is reflected in the 
value of the slope, or vapor transport coefficient 

( 
dEWL ) 

d(evs - evJ 
, as calculated by least-squares linear re-

gression. The general form of the equation is 
EWL = C · (Qvs - Qva), where C is the vapor transport 
coefficient. Since Tb is stable in C. anna between 20 and 
37 °C, Qvs is constant at all temperatures measured in this 
study, assuming T. is also constant. Thus, if T, does not 
change significantly over the temperature range used 

( 
dEWL) dEWL then = -d-- , and C is equal to the slope 

d(Qvs - QvJ Qva 
of the regression lines relating EWL to eva in Table 1. 
Some birds are believed to alter T, by changing blood 
flow patterns as described above. 

The thermoregulatory effectiveness of EWL is deter
mined not by the evaporation rate alone, but also by the 
rate of metabolic heat production (Calder and King 
1974). Although humidity has a greater effect on the rate 
of EWL in C. anna than in other endotherms, humidity 
appears to have a smaller influence on ile/ilm at lower 

slope (°C) 

-0.57 20--30 This study 
-0.93 33-37 This study 
-1.72 40--42.5 Lasiewski et al. (1966a) 
-1.54 20--30 Webster and King (1987) 

-0.75 20--35 Edwards and Haines (1978) 
-0.54 20--35 Edwards and Haines (1978) 

b Minimum and maximum temperature at which the relation be
tween H0/Hm and water vapor density was measured 

temperatures ( < 33 °C) than has been measured in other 
birds (Table 4). The slope of the regression relating 
ile/ilm to Qva for C. anna at T. below 33 °C is less than 
half that calculated for the painted quail, Excalfactoria 
chinensis [applying least-squares regression to data from 
Fig. 2 in Lasiewski et al. (1966a)], and the pigeon, Colum
ba livia [using data from Table 2 in Webster and King 
(1987); V0 , and EWL were converted to heat assuming 
1102 • h- 1 = 5.5824 Wand 1 g H 20 · h- 1 =0.67454 W, 
respectively]. The shallower slope observed for C. anna 
probably results from high levels of metabolic heat 
production that keeps the He/ ilm ratio small at low hu
midities when EWL is not severely restricted by Qva· At 
T. above 33 °C the slope of the relationships between 
ile/ilm and Qva did not differ significantly from those of 
the other birds listed in Table 4. Since the vapor transfer 
coefficient did not vary between temperature conditions 
(see above), this change in slope suggests an increase in 
the effect of temperature on EWL in C. anna at T.s above 
33 °C. 

The He/ilm ratios at various humidities are available 
for two mammals [deer mouse, Peromyscus maniculatis 
and house mouse, Mus musculus; Edwards and Haines 
(1978)] for T. ranging from 20 to 35 °C. The Qva depen
dence in the mammals is similar to that measured for 
C. anna below 33 °C. No values are available for heat
stressed mammals. 

Water loss. Water turnover in free-living C. anna av
eraged 1.64 ml H 20 · g- 1 

· day- 1 for birds experiencing 
a mean daytime temperature of24 °C (Powers and Nagy 
1988). This value is high compared with that of other 
birds [see Nagy and Peterson (1988) for review], and 
presumably reflects their liquid diet. To determine the 
contribution of EWL to water turnover, the fraction of 
total daily water loss due to evaporation was calculated 
from the equations in Table l. In addition, changes in 
this fraction over temperatures ranging from 25 to 40 °C 
were approximated by using the appropriate equation 
from Table 1 and by making adjustments to total daily 
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Fig. 6. The percent of metabolic heat production dissipated by 
evaporation (if./ Hm) as a function of temperature in dry air. Points 
represent mean values; error bars represent ± 1 SD. The dotted line 
is the predicted relationship based on Calder and King (1974, eq. 
56). The solid line is based on the equation fI./ilm=3.24+2.73 
e-lTa calculated from the observed data at T. from 20 to 37 °C 

water turnover based on changes in energy intake expec
ted to occur over this temperature range. The calcula
tions are as follows. 

Since hummingbirds drink little free water, total water 
intake is directly related to energy expenditure if the birds 
are in energy balance. Field metabolic rate of free-living 
C. anna when daytime temperature averages 24 °C is 
83 W · kg- 1 (Powers and Nagy 1988). Thus, daily water 
consumption is equal to l.64ml · g- 1 · day- 1/83 W · kg- 1, 

or 0.02 ml · g- 1 
· day- 1 for each watt per kilogram. It is 

assumed that daytime RMR is 36 W · kg- 1 (the average 
metabolic rate of birds between 33 and 37 °C in Fig. 1), 
and nighttime RMR is 0.75x36W·kg- 1 , or 
27 W · kg- 1 [nighttime RMR is approximately 25% 
lower than daytime RMR; Aschoff and Pohl (1970)]. 
The photoperiod during the measurement of field meta
bolic rate was 12L: 12D (Powers and Nagy 1988); thus 
mean 24-h RMR is (36W·kg- 1 +27W·kg- 1)/2, or 
31.5 W · kg- 1

. Although thermal conductance has been 
shown to differ between the active and resting phase of 
the daily cycle (Aschoff 1981), it was assumed to be 
constant at 2. 7 8 W · kg- 1 · °C - 1 (Fig. 1) for the purpose 
of these calculations. Assuming that the lower critical tem
perature for C. anna is 33 °C (Fig. 1 ), the daily thermostatic 
cost at 24°C is 2.78W·kg- 1 -c- 1 x(33°C-24°C), or 
25 W · kg- 1

. Therefore, the total daily maintenance cost 
for C. anna at 24 °C is 31.5 W · kg- 1 +25 W · kg- 1

, or 
56.5 W · kg- 1

. The total cost of activity for free- living 
C. anna (field metabolic rate - maintenance) is 
83-56.5 W · kg- 1

, or 26.5 W · kg- 1
. 

Assuming that calculated activity costs do not vary 
with temperature, water consumption will change in 
proportion to thermostatic costs. For example, at 25 "C 
the estimated thermostatic cost of C. anna is about 
2.78 w. kg- 1 . 0 c- 1 x (33 °C-25 °C), or 22 w. kg- 1 . 

Field metabolic rate for C. anna at 25 °C would thus be 
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Fig. 7. Relation between estimated daily water loss, the fraction of 
water loss due to evaporation, and ambient temperature. Evapora
tive water loss values taken from the present study are for fasted 
birds at rest during the day 

22+31.5+25.5 W · kg-1, or 80 W · kg- 1 , and daily 
water intake would be 80 W · kg- 1 x 0.02 ml· g- 1 · day- 1 

perW · kg- 1 , or 1.60 ml· g- 1 · day- 1 . Assuming C. anna 
exhibits the maximum possible EWL rate 25 °C (Qva = 0), 
water loss by evaporation is 0.36 ml · g- 1 

· day- 1 , only 
22.5% of the total daily water turnover. Similar calcula
tions have been made for T. equal to 30, 35, 37 and 40 °C 
(Fig. 7). 

Evaporative water loss in many species of birds is 50 % 
or more of total daily water turnover (Bernstein 1971; 
Skadhauge 1981; Dawson 1982). For C. anna, EWL 
represents a relatively small portion of the total daily 
water turnover at low to moderate temperatures, even 
though the rate of EWL is high compared with that of 
other birds and mammals (see above). Estimated field 
EWL in C. anna did not exceed 50% of the total daily 
water flux until T. reached 40 °C (Fig. 7). Although 
daytime temperatures experienced by hummingbirds can 
be high, mean T. experienced over a 24-h period is typic
ally below 25 °C (e.g., Powers and Nagy 1988; Powers 
1989). 

The largest fraction of daily water loss in humming
birds occurs in the excreta, and offers a plausible ex
planation of why hummingbirds have osmoregulatory 
systems adapted to produce dilute urines (Calder and 
Hiebert 1983). These data support the hypothesis that 
hummingbirds are not water stressed under moderate 
temperature conditions [T.s35 °C; Calder (1979)]. 

Birds in hot-humid climates. Free-living animals do not 
live in completely dry environments, yet the effects of 
humidity on thermoregulation and water regulation are 
not well understood. In most temperate environments 
that support significant numbers of hummingbirds, the 
effects of humidity may not be a critical issue because 
humidity is generally low (e.g., Powers 1989). However, 
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Table 5. Basal metabolic rates and body temperatures for tropical and non-tropical hummingbird species 

Species Mass BMRC % of Predictedd T e b Source 
(g) (W·kg- 1 ) (OC) 

Tropical species 

Amazilia tzacatl 4.3 32.4• 168 
Trochilus scitulus 4.9 36.8• 198 
Trochilus polyptmus 6.3 27.4• 157 
Calibri delphinae 7.1 27.4• 162 
Eulampis jugularis 8.5 17.3 137 
Mean 164± 22.l 

Non-tropical species 

Patagona gigas 19.1 15.1 148 
Archilochus alexandri 2.7 18.4b 107 
Stellula calliope 2.8 22.3b 131 
Selasphorus sasin 3.1 l 7.3b 128 
Archilochus colubris 3.2 24.0b 146 
Calypte costae 3.2 17.9b 109 
Selasphorus rufus 3.6 19.0b 119 
Calypte anna 4.5 35.2• 184 
Calypte anna 5.4 21.2b 152 
Eugenes fulgens 6.6 15.1 Ill 
Lampornis clemenciae 7.9 12.8 99 

Mean 130±25.3 

• Measured during the active phase of the daily cycle 
b Represents minimum metabolic rate and may be lower than the 
actual BMR 
c Within the thermal neutral zone 

for animals that live in the humid tropics, humidity might 
have important effects on physiological responses to 
heat. 

Water vapor density in the humid tropics can exceed 
25 g · m - 3 in some locations (e.g., Evans 1939; Janzen 
1976), which can reduce hummingbird EWL by 50-70% 
(Fig. 2). Since the humid tropics are characterized by 
high T.s ( > 30 °C during the day), a reduction in EWL 
might impose thermoregulatory difficulties. Some tropi
cal birds might have evolved lower basal metabolic rates 
to compensate for the lower H.f.Hm ratios expected in a 
humid environment (Weathers 1977). Evidence for this 
is most pronounced in species that forage in the sun 
(Weathers 1979). Basal metabolic rates of birds that 
forage in the sun are on average 24% lower than pre
dicted from body mass [using the equations of Aschoff 
and Pohl (1970)] for 13 species of birds ranging in mass 
from 6.1 to 55 g (Weathers 1979; Bartholomew et al. 
1983; Weathers 1986). Tropical birds that forage in the 
shade may have basal metabolic rates closer to allo
metrically predicted values (Weathers 1979). 

Although some hummingbirds forage in the sun (e.g., 
Stiles and Wolf 1970; Powers 1987), metabolic rates of 
many hummingbird species do not follow the pattern 
described above. Basal metabolic rated of six species of 
tropical hummingbirds were on average 64 % higher than 
predicted allometrically (Table 5). Non-tropical hum
mingbirds also exhibit high basal metabolic rates, but on 
average they are only 30% higher than predicted allo
metrically. This difference is statistically significant 
(t= 2.58, df = 14, P< 0.05), suggesting that tropical hum-

42.0 Schuchmann and Schmidt-Marloh (1979a) 
42.5 Schuchmann and Schmidt-Marloh (1979b) 
43.0 Schuchmann and Schmidt-Marloh (1979b) 
43.0 Schuchmann and Schmidt-Marloh (1979a) 
42.0 Hainsworth and Wolf (1970) 

42.5 

Lasiewski et al. (1967) 
Lasiewski (1963) 
Lasiewski (1963) 
Lasiewski (1963) 
Lasiewski (1963) 
Lasiewski (1963) 
Lasiewski (1963) 

43.0 This study 
Lasiewski (1963) 
Lasiewski and Lasiewski (1967) 
Lasiewski and Lasiewski (1967) 

d Calculated as the observed divided by the predicted x 100. Pre
dicted values calculated from the resting phase equation for non
passerine in Aschoff and Pohl (1970) 
• Body temperature measured at 37° C 

mingbirds might have higher basal metabolic rates than 
non-tropical hummingbirds. If tropical hummingbirds 
living in humid environments do indeed face ther
moregulatory difficulties because of restricted EWL, then 
it seems that a high basal metabolic rate would only 
make thermoregulation more difficult. Thus, the adap
tive value of a higher basal metabolic rate in tropical 
hummingbirds is unclear. 

In addition to hummingbirds having high levels of 
heat production, is the daytime Tb of hummingbirds high 
compared with birds in general? In five species of tropical 
hummingbirds, mean Tb is 42.5 °C (Hainsworth and 
Wolf 1970; Schuchmann and Schmidt-Marloh 1979a, b ). 
Limited hyperthermia would augment both evaporative 
and non-evaporative heat loss, and it is possible that 
hummingbirds allow their Tb to increase slightly for this 
reason. Weathers (1981) has reported high Tb for several 
small birds during heat stress, and suggested that hyper
thermia may be a common means of conserving both 
water and energy. 

The only Tb data for non-tropical hummingbirds 
measured during the active phase are those for C. anna 
measured in this study, for which Tb was 43 °C, a single 
C. anna by Bartholomew et al. (1957) for which Tb was 
41.9 °C, five species measured by Wetmore (1921, report
ed in Morrison 1962) for which Tb ranged from 38.2 to 
41.4 °C, and four species by Lasiewski (1964) for which 
Tb ranged from 39 to 41 °C. Body temperature in the last 
two studies was lower than that measured for tropical 
species. However, Lasiewski's measurements were made 
only at low T.s ( < 30 °C). 
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Another complication is that the methods used to 
measure Tb vary greatly. This limits the usefulness of 
these data for comparison. For example, Morrison 
(1962) measured Tb in three species of Brazilian hum
mingbirds and reported a range of 38.4--39.3 °C. These 
values are probably low because Morrison's measure
ments are based on axillary temperature rather than core 
temperature. Other methods include measurement of 
deep esophageal temperature (e.g., Bartholomew et al. 
1957), pectoralis muscle temperature with a surgical im
plant (e.g., Lasiewski 1964) or hypodermic probe (this 
study), and cloaca! temperature (Carpenter 1974). 
Together with the limited amount of hummingbird Tb 
data available, the variability that is undoubtedly 
produced by these various methodologies makes it dif
ficult to identify patterns or draw general conclusions 
with regard to Tb in hummingbirds. 

This study shows that C. anna have the highest mass
specific EWL of any endothermic vertebrate. Although 
EWL in C. anna is high, fl0 / flm is relatively low, suggest
ing that EWL is not as effective as dissipating flm in 
hummingbirds as it is in most other birds. In C. anna 
EWL decreased rapidly with increasing Qva· The slope of 
the relationship between EWL and Qva was much greater 
than that observed for other birds. If EWL in other 
hummingbirds respond to changes in temperature and 
humidity in a manner similar to C. anna, then humming
birds on hot-humid tropics might have trouble handling 
heat stress, or have evolved mechanisms to enhance 
EWL when Qvs - Qva is low. Data currently available hint 
at the possibility that hummingbirds might become 
hyperthermic, which would enhance dry heat transfer, 
but more data are needed before this hypothesis can be 
accurately evaluated. 
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