
Digital Commons @ George Fox University Digital Commons @ George Fox University 

Faculty Publications - Biomedical, Mechanical, 
and Civil Engineering 

Department of Biomedical, Mechanical, and 
Civil Engineering 

2014 

High-Efficiency Thrust Vector Control Allocation High-Efficiency Thrust Vector Control Allocation 

Jeb S. Orr 

Nathan Slegers 
George Fox University, nslegers@georgefox.edu 

Follow this and additional works at: https://digitalcommons.georgefox.edu/mece_fac 

 Part of the Aerodynamics and Fluid Mechanics Commons, Mechanical Engineering Commons, 

Navigation, Guidance, Control and Dynamics Commons, and the Propulsion and Power Commons 

Recommended Citation Recommended Citation 
Orr, Jeb S. and Slegers, Nathan, "High-Efficiency Thrust Vector Control Allocation" (2014). Faculty 
Publications - Biomedical, Mechanical, and Civil Engineering. 20. 
https://digitalcommons.georgefox.edu/mece_fac/20 

This Article is brought to you for free and open access by the Department of Biomedical, Mechanical, and Civil 
Engineering at Digital Commons @ George Fox University. It has been accepted for inclusion in Faculty Publications 
- Biomedical, Mechanical, and Civil Engineering by an authorized administrator of Digital Commons @ George Fox 
University. For more information, please contact arolfe@georgefox.edu. 

http://www.georgefox.edu/
http://www.georgefox.edu/
https://digitalcommons.georgefox.edu/
https://digitalcommons.georgefox.edu/mece_fac
https://digitalcommons.georgefox.edu/mece_fac
https://digitalcommons.georgefox.edu/mece
https://digitalcommons.georgefox.edu/mece
https://digitalcommons.georgefox.edu/mece_fac?utm_source=digitalcommons.georgefox.edu%2Fmece_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/222?utm_source=digitalcommons.georgefox.edu%2Fmece_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.georgefox.edu%2Fmece_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/226?utm_source=digitalcommons.georgefox.edu%2Fmece_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/225?utm_source=digitalcommons.georgefox.edu%2Fmece_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgefox.edu/mece_fac/20?utm_source=digitalcommons.georgefox.edu%2Fmece_fac%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arolfe@georgefox.edu


JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS
Vol. 37, No.2, March-April 2014

Gij

B
B;
c,

F;
H
1
ie, le, kG
J =
k
I
M
m
Np

Nfl

11

P

R
rei

S
TA,
TG,

y;

High-Efficiency Thrust Vector Control Allocation

Jeb S. Orr'
The Charles Stark Draper Laboratory, Inc., Huntsville, Alabama 35812

and
Nathan J. Slegers'

University of Alabama in Huntsville, Huntsville, Alabama 35816
DOL 10.2514/1.61644

A generalized approach to the allocation of redundant thrust vector slew commands for multi-actuated launch
vehicles is presented, where deflection constraints are expressed as omniaxial or elliptical deflection limits in gimbal
axes. More importantly than in the aircraft control allocation problem, linear allocators (pseudoinverses) are
preferred for large booster applications to facilitate accurate prediction of the control-structure interaction resulting
from thrust vectoring effects. However, strictly linear transformations for the allocation of redundant controls
cannot, in general, access all of the attainable moments for which there is a set of control effector positions thatsatisfles
the constraints. In this paper, the control allocation efficiency ora certain class of linear allocators subject to multiple
quadratic constraints is analyzed, and a novel single-pass control allocation scheme is proposed that augments the
pseudolnverse near the boundary of the attainable set. The controls are determined over a substantial volume of lhe
attainable set using only a linear transformation; as such, the algorithm maintains compatibility with frequency-
domain approaches to the analysis of the vehicle closed-loop elastic stability. Numerical results using a model of a
winged reusable booster system illustrate the proposed technique's ability to access a larger Fraction of the attainable
set than a pseudoinverse alone.

Nomenclature
principal axis lengths of ith constraint ellipsoid,
rad
control effectiveness sensitivity matrix, tjs2
submatrix of B associated with ith engine, I js2
constraint scaling constant associated with
.rh engine
thrust force of ith engine, lbf
scalar cost function
identity matrix
orthonormal basis of gimbal frame G
rigid body moment of inertia tensor, slug' ft2
number of engines
unit vector in 1R"
moment sensitivity matrix, ft . lbfjrad
number of control inputs; 2k
matrix with columns forming a basis for kernel
of PB-I
matrix with columns forming a basis for kernel
of B
number of controlled degrees of freedom
number of parameters used to determine
a generalized inverse P
null space projecting transformation
location of /th engine with respect to vehicle
center of mass, ft
inverse allocation weight matrix
thrust vector transformation matrix due to
actuation
transformation of nozzle angular degrees
of freedom from gimbal to body
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null-position and perturbed thrust unit vector,
respectively
allocation weight matrix
perturbation angular acceleration, rad/s2
perturbation angular acceleration, commanded,
rad/s'
image of thrust deflection lit' under the
transformation B,
control vector of thrust deflections, rad
component of control vector within, on,
and outside the admissible set, respectively
augmented control vector, rad
vector in IR2 of small thrust rotations in
gimbal frame, rad
constraint ellipsoid of /th engine having
shape matrix Ri
image under B of /th engine's constraint
ellipsoid having shape matrix Qi
allocation efficiency
vector in IR3 of small thrust rotations in
body frame, rad
positive scaling constant
vector of Lagrange multipliers
jth basis vector of kernel of B
set of achievable angular accelerations and
its boundary
particular subset of achievable angular
accelerations using a linear inverse
subset of achievable angular accelerations using
a linear inverse and command augmentation
set of admissible control deflections and
its interior, exterior, and boundary, respectively
subset of controls corresponding to <1>*
rigid body angular velocity, radjs

E;(R;)

E!(Q;)

cJ)**

n, n-,
sr, o(n)
n*
OJ

I. Introduction

T HE u~e ~f opti~lal control allocation has received ext~nsi\'e
attention In the literature, particularly in the context of aIrcraft

c?n~ol [t,2]. Typicatly, high-performance aircraft are designed with
significantly overlapping control moment effectiveness at a particular
flight condition, and so the resultant control allocation solution
is underdetennined. Likewise, in the context of launch vehicle
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dynamics, the proposed development of both heavy-lift rockets and
small reusable (flyback) boosters has led to interest in the
applications of optimal control allocation schemes LOsystems with
multiple gimbaled rocket nozzles.
Durham [3-5] developed the fundamental theory of the allocation

of redundant effectors with constraints and proposed algorithms such
as the well-known direct method [6--8) to allocate them. Thereafter,
Bordignon [9) extended the theory and evaluated numerous methods
for solving the underlying constrained optimization problem. More
recently, an interest has developed in considering higher-dimensional
objective spaces, such as structural loads [10,1 J), the supporting
theory for which was explored by Beck [12]. In the context of solving
the three-moment constrained control allocation problem, much of
theexisting literature has focused on efficient numerical optimization
methods that are practically implementable in the flight software
[2,8,13-16], relax..ing the requirement that the moments are globally
linear in the controls (17,18), explicit consideration of the actuator
dynamics (19], and fault tolerance [20,21 [.
To enhance performance margins, crew safety, and likelihood of

mission success, it is desirable LOdesign a control allocation
mechanism that is capable of effecting the maximum possible angular
accelerations on the vehicle within the capability of the control
actuators. However, achieving all feasible control objectives requires
the use of an online nonlinear optimization scheme. As a matter of
engineering practice in the launch vehicle community, it is preferred
that nonlinear behaviors are relegated to the edges of the performance
envelope. For example, conservative linear stability analysis tech-
niques are often considered mandatory for human-rated launch
systems [22]. Nonlinear behaviors are more easily justified if
they improve performance for off-nominal conditions and onJy
affect behavior in what are likely to already be failure scenarios.
Notwithstanding the flight certification environment, the application
of algorithms with variable convergence characteristics [2] raises
concerns about: computational feasibility. Finally, some common
formulations (such as quadratic programming) are not compatible
with nonpolytopic constraint geometries.
Unlike in some aircraft where actuator servoelastic coupling and

inertial reaction torques may be ignored under the premise that the
control allocation algorithm provides only the required rigid body
angular acceleration, these effects are non negligible and often
dynamically significant for large flexible rocket vehicles with
nonminirnum-phase parasit-ic elastic dynamics [23,24]. The use of
multiple engines with varied servodynamics requires that the exact
combination of actuators to be employed at any flight condition is
known; for stability analysis, it is insufficient to assume that the
command is automatically achieved by the control allocator in light
of the dynamics affecting the motion of applied thrust and the inertial
coupling (tail-wag-dog effect) of the relatively heavy engines
themselves.
In the case of gimbaled rocket engines, the maximum control

deflection is ultimately limited by the linear travel of the actuators,
which are often of the high-power hydraulic type. Other constraints
may dictate the upper limits on the nozzle slew angle with respect to
the null position. These include margins to prevent bell interference
or recontact with other stage hardware, flexure limits on propellant
and oxidizer feedline ducts, and constraints to mitigate plume
impingement or other flow interaction effects. Solely because of
the actuator kinematics, the boundary of admissible vectoring angles
is not a rectangular constraint. When all limiting factors are
considered, a common method of expressing the constraint is as an
omniaxial (root-sum-square) limit on the thrust vectoring angle that
prescribes a circular boundary. To maximize the generality of the
present approach, this circular boundary will be expressed as an
ellipse in ]R2.
Multi-actuated thrust-vector control systems of this type are

common in launch vehicles, and always yield redundant control
authority for nondegenerate geometries. If the null positions of the
thrust vectors are symmetric with respect to the control a.xes and
nominally aligned along the vehicle symmetry axis, the control
mixing required to effect accelerations in roll, pitch, and yaw is trivial
and no special algorithm is warranted. However, compJex asymmet-

ric geometries with differing thrust levels and constraints do oat
admit obvious solutions. A control allocation algorithm must be
employed to both maximize performance capability and minimize
adverse effects such as steering (cosine) losses and internal struct-
ural loads.
One particularly challenging problem in the design of control

allocators is determining the shape of the set of attainable moments
that are achievable using a particular allocation strategy, and
comparing it with the extremal set of moments that are theoretically
attainable subject to the constraints [4,5]. The fanner is usually that
which can be accessed using a simple online algorithm, and the latter
requires an iterative optimization approach that is undesirable for
launch vehicle flight software implementation. Although research
into the optimal allocation of constrained controls has yielded a rich
literature beginning with Durham's seminal paper [3], the existing
theory treats only constraints that can be expressed as a linear
inequality; that is, independent saturation limits that describe a
polytope bounding the admissible controls. There has been virtually
no treatment of constraint geometries not expressible as linear
inequalities except to approximate them to fit within the existing
mathematical framework [13]. As will be shown, the use of multiple
quadratic inequality constraints admits the convenient set properties
of ellipsoids under linear transformations [25] and the ellipsoidal
calculus [26]. This framework can be employed to rapidly ascertain
the boundary of the setof attainable moments under relatively general
conditions.
Most importantly, the application of a control allocation algorithm to

launch vehicles necessitates compatibility of the design paradigm with
the heritage flight certification processes that dominate tbe space
access industry. Because of their complexity and nonlinearity, iterative
control allocation algorithms used to resolve effector saturation are
difficult to reconcile with the present application. III stead, a single-pass
null-space augmentation method conceptually analogous to that
presented by Bordignon and Durham [27] and JingPing et al. (28] is
proposed. As a result of a novel projection technique and the presence
of an analytic constraint geometry, it is shown not only to be a
computationally feasible algorithm, but a highly effective approach for
increasing the control aUocator efficiency while maintaining linearity
over a substantial portion of the total capability.
The organization of the paper is as follows. The statement of the

thrust vector control allocation problem is given in Sec. [I. In Sec. ill,
the geometries of the total and particular sets of attainable moments
are derived for a general, multi-actuated thrust vector controlled
system subject to elliptical constraints, and the volume metric of
allocation efficiency is introduced. The null-space augmentation
method for high-efficiency allocation of controls exceeding the
capability of a linear allocator is proposed in Sec. IV, along with
numerical results in Sec. V that demonstrate the efficacy of the
proposed approach as applied to a nontrivial vehicle geometry.

n. Problem Statement
The general control allocation problem is concerned with the

mapping of the deflections of I1/. actuators into an n-dirnensional
moment space, and the relationship of a closed, bounded, and convex
set Q of admissible control deflections inR'" to its associated closed,
bounded, and convex set of achievable moments <I> in IR/I.As a matter
of numerical and practical convenience, the space ¢ is that of angular
accelerations in 1Ft3. For consistency with the existing control
allocation literature, this will be referred to as a moment space. In this
application, the simultaneous control of three angular degrees of
freedom of the rigid body are considered. The rigid-body dynamics
are given by (24]

k

lo) + wX./w =L F;rCiuf
;=1

where ./ is the integrated vehicle inertia tensor and W E IR3are the
body angular rates; the notation Ox forms the skew-symmetric cross-
product matrix of appropriate size.

(I)



Let the control vector zs E JR.IIIbe given by
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Each engine is described by its location rc. with respect to the
center of mass, its thrust Fi, and its instantaneous thrust unit vector
ui, expressed in the body frame. Thedeflected thrust vector is related
to the null position unit vector u, by a kinematic transformation

(2)

The null position is associated with zero actuator deflection, and so
Tf is nominally the identity matrix. With respect to perturbations, it is
assumed that the angular deflections of the nozzle are small and that
the nonlinear attitude dynamics can be neglected. The kinematic
relationship of the unit null vector can be expanded via skew-
symmetric small rotations, and Eq. (I) becomes

k k

i(w - tVa) =L FjrG;lI; - L F;r~;Ii~ej (3)
;=1 ;=1

where 8; E JR.3 is a vector of small rotations relating the deflected
thrust vector to its null position in the body frame. Without loss of
generality, it is assumed that there exists a combination of u; such that
the first terms in the sum on the right-hand side ofEq. (3) are zero; that
is, there exists some combination of nominal engine cant angles U; at
each flight condition such that the net moment is zero.

Because each gimbaled nozzle has only two degrees of freedom,
let Tf E }R3x2 be the transformation that maps the nondegenerate
local pitch-yaw ("rock" and "tilt") deflections of the nozzle into
the body frame, and let these angles be described by a vector pair
of local perturbation angles Di E }R2 about directions norrnal to the
thrust axis.

The geometry of an idealized nozzle is shown in Fig. 1. The G or
gimbal frame is defined by a basis it;,]c, ke, where ie ~saligned with
the thrust unit vector at its null position. GenerallY,)e and kc are
chosen to correspond to the axes about which actuator extension or
retraction rotates the nozzle; the first and second elements of Oi
correspond to rotation about.lc and ke, respectively. The use of Tf
eliminates the redundant degree of freedom associated with rotation
of the engine about its thrust axis.

Considering the linear dependence of Eq. (3) on 8;, the moment
sensitivity matrix M E IRRxm can be written as

Thrust vector geometry.

A = [<si (5)

Under the foregoing assumptions, it follows that

,=BA (6)

where the perturbation angular acceleration OJ - Wo = I" and
B = r:' M is the control effectiveness matrix expressed in unitsof
angular acceleration per unit angle of nozzle deflection. In general,
B is varying in time as the parameters change due to the consumption
of vehicle propellant. It is furthermore assumed that B has column
rank n, which is assured for nondegenerate geometries and nonzero
thrusts Fi•

By virtue of the kinematic restrictions on the nozzle deflections,lei
there be associated with each constraint on Dj the admissible ellipsoid
Ei(Ri) where

(7)

and R; E JR.2X2is a symmetric, positive-definite matrix; for example,
a circular constraint is the special case where R; is a scalar multipleof
-the identity matrix.

Because there exist k independent, symmetric constraints on the
control vectors 8j, the admissible controls lie within a closed and
bounded set

Q= {A EIH:!"I<Si EE,. 'ii} (8)

Under the linear transformation B, there exists a compact convexset
of attainable moments ell E R" ,

<t> = {BA E lR"IA E Q} (9)

(4)

the image of Q. The set ell is hereafter referred to as the attainable
moment set (AMS).

The general thrust vector control allocation problem is as follows:
given an attainable command rc E cP, one seeks to determine a setof
control effector deflections A that minimizes some convex metric
H(!:::..) subject to the constraints r = rc and 6. E Q. In general,
because rank(B) = n. and m > n, there may exist multiple 6 that
satisfy Fc = B!:::.. if Fc E <P. If the command is infeasible (I"c ~ $),
the goal is to generate a response that minimizes some alternative
error metric H' (I" - Ba) while still satisfying the constraints 6. E Q.

The obvious choice of minimizing [I" - Btllb may be undesirable
because it can lead to a loss of collinearity between the achieved
response and the command. For this reason, infeasible commands can
be accommodated via scaling. Solution approaches for infeasible
conunands are not treated in this paper.

For commands within the attainable set and owing to the
aforementioned practical considerations, it is desired that 6 be
determined over a substantial volume of <1> using a linear
transformation rather than the online solution of a constrained
optimization problem. As was shown by Durham [3] in applicationto
the aUocation of redundant controls for aircraft, a right generalized
inverse P satisfying BP = I can be determined that efficiently
allocates redundant controls to satisfy commands rein someproper
subset <1>* c ¢l without violating the constraints; that is, a linear
control allocation law P cannot access all of <1>. Although the basisol
the argument is similar to that given by Durham for aircraft, the
underlying topology is markedly different owing to the uniquenat~re
of the constraints. The details will be explored in tbe followsu
section.

m. Determining <I> and <1>* with Elliptical Constraints
In the existing control allocation literature, the set of attai~able

moments is readily given by the image under B of the m~dimenslOna1
polytope Q, found by determining via binary enumeration the
vertices of the »i-simplex representing all possible combinationsof
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controls set at their limits [5}. In comparison with coupled analytic
constraints on the controls, the geometry of<I>can bedetennined from
the properties of ellipsoids under linear transformations.
Each admissible set in Eq. (7) is an ellipse in]R2 or, equivalently, a

degenerate ellipsoid (having In - 2 degenerate eigenvalues) in the
»r-dimensional space. Note that each £; is wholly contained in a two-
dimensional subspace. The admissible controls Q are found from the
union of £; in IRIII,and the attainable moments are the image of this
union Q under the linear transformation B. The set Q is a dosed,
bounded, and convex set in IRm, and its image under B (if B is full
rank) is necessarily also closed, bounded, and convex.
Because each 8; are independent, the Ei are nonintersecting in Rill

and it follows that <t> can be found via the Minkowski (direct) sum
of the images of £i under an appropriate partitioning of B. Let the
image of £j under the blockwise-componeut transformation of B be
given by

£;(Q;) = B;£; = {y; E lIl.3IyTQi'y;,; I} (10)

noting that R, transforms as a rank-2 tensor and

(ll)

after partitioning B conformably as

B=[B, B, ( 12)

Assuming each Bi E IRllx2 has full column rank, the image of Ri in]R1I
is adisk; Qi is symmetric, positive semidefinite, and always has n - 2
zero eigenvalues whose eigenvectors are in the kernel of BT (Fig. 2).
Thus, the inverse of the positive-semidefinite matrix Qi is to be
interpreted as its generalized inverse in this context.
The set of attainable moments is given by

noting, in particular, the intersection in Eq. (13). There exist no
general methods to compute the intersection of degenerate
hypereUipsoids. In Eq. (13), the intersection is identically zero
owing to the disjoint constraints. Thus, the Minkowski sum is
computable and the set of attainable moments can be determined.
As was shown in [29], the computation of the Minkowski sum in

Eq. (13) can be accomplished using various methods; for example, it
can be approximated to arbitrary precision via the use of multiple
internal and external approximating ellipsoids along directions 1 E
R.3[3D}; it can be inscribed with a unique maximum-volume ellipsoid
[(Q), the John ellipsoid [31}, or it can be computed numerically [33J.

A. Generalized Inverses
Pervasive in the controls literature is the use of right generalized

inverses for the allocation of redundant controls; that is, linear
transformations that compute solutions to Eq. (6). If B is full rank and
m > n, there are an infinite number of generalized inverses P that
satisfy

SP = I (14)

JR" oT R'i1o; = 1~...,.~--.

-A---7f~-='v,.f--_hi --+--+--1---\ ~

Fig.2 Image of constraint boundary as a cylinder (disk) in JR.".

In the general case, the number of free parameters in the
determination of P is (m - /1.)11 [3]. LetP be parametrized by a vector
of size p. If P < (111 - n)n, the generalized inverse P will be referred
to as a structured generalized inverse. Conversely, an inverse for
which p = (m - n)n is known as a tailored generalized inverse [9}.
Structured inverses arise by imposing constraints on the solution
other than Eq. (14), which reduces the number of parameters. The
most restrictive generalized inverse is the well-known Moore-
Penrose inverse, which satisfies all four Penrose conditions and has
the convenient property of producing solutions that lie wholly outside
of the null space of B [32]. This important fact will be of interest in a
later section.

B. Generalized Inverses and Constraints
Generalized inverse solutions to the control allocation problem are

favored due to their linearity, but they do not take into account the
limits on the controls. As such, along each unit direction 1 E ]RII,there
exists some positive constant K such that

KPI E a(Q) (15)

At least one of the controlled degrees of freedom has intersected the
boundary o(Q) of the set of admissible controls. In general, however,
this does not imply that KBPi E o(cD) for aU I. Under a generalized
inverse, only a subset of the admissible controls maps to the boundary
of the attainable moment set. This leads to the following theorem:

Theorem I: Given the linear map r = BD., r E ]R11,D. E R",
m > n, a compact, convex geometric constraint D. E n, and any
linear allocator P satisfying BP = 1, the associated particular AMS
<1>* is a proper subset of the total AMS <1>.

Proof' The following proof is similar to that given by Durham [3]
and is fundamental in the linear allocation problem. Consider the
subset of controls 'I' ~ {I\. E a(Q)} that lie on the boundary a(Q).
Because n is bounded, the span of \l' is 11/.. Suppose that <J>* = 11>.
Then, PBI\. E a(Q) V I\. E '1', and so I\. = PBI\. "" (PB -/)1\. = 0
'r/ D. E 'P. If this is true, then span(N(PB -I)) = m. This cannot
hold if m > 11, implying ¢l* C cD by contradiction. 0
Geometrically speaking, the attainable moment set under a

particular inverse P, introduced earlier as <I;:J* and referred to as the
particular AMS, is a proper subset of the total AMS ¢:

<]>' = {BI\.IPBI\. E Q}

Because B is a mapping onto an n-dimensional space, it follows
that only some subset of controls t::.. map to the boundary of c.lJ;
the remainder map to its interior. The kernel of PB -1 spans an
n-dimensional subspace of R" that contains 0*, the inverse image of
<1>* [31. Let N p E IRIIIXII be formed from a basis for N(PB -I). It
follows that the orthogonal projection ofn onto the subspace defined
by N p yields the particular constraint set

( 16)

The image of Q* under B is indeed the elusive particular AMS.
However, computation of the projection in Eq. (16) invalidates the
prior assumption that the inverse images of R, have no intersection
in R". This complication precludes the analytic computation of the
particular AMS using Eq. (13). Under certain conditions when
intersections do not occur or through approximation methods [29],
the particular AMS can be determined using ellipsoidal techniques to
some degree of accuracy. However, the requisite linear algebra
operations, practically speaking, exceed the computational effort
required to determine 11>* directly via a gridded bisection search.
The gridded bisection search method allows for efficient direct

computation of the particular AMS. In this method, the unit balJ is
sampled to yield a set of unit directions I. (Because of symmetry, only
one-half of the space must be sampled). For each unique l, K(l) is
determined via a bisection method. The convex hull of the resultant
point set yields an affine approximation to the particular AMS.
Examples appear in Sec. V.
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c. Allocation Efficiency
Given a general control allocation scheme D. = fcr c), the

allocation efficiency '1 is defined as the volume ratio of the attainable
set cD"'" versus the theoretical upper bound:

vol(<l>')
n> vol(<l»

(17)

The volume of the total and particular AMS can be computed to a
high degreeof accuracy using standard convex hull algorithms, orcan
be approximated using the log determinant of a maximally inscribed
ellipsoid, as was shown in [29].

IV. High-Elliciency Quasi-Linear Algorithm
The use of a structured generalized inverse has distinct advantages

in the allocation of redundant controls; namely, it is linear, it can be
precomputed or easily computed online, and it is deterministic and
nan iterative. The properly parameuized weighted least squares
(WLS) generalized inverse is a convenient structured inverse that
minimizes the weighted norm of the control deflection vector and
provides better allocation efficiency in many scenarios than the
Moore-Penrose inverse.

The WLS inverse minimizes the cost function

H(to) = ~toTSto + "T(I, - BIl) ( 18)

where S E IRIIIXIII is a symmetric positive semidefinite matrix and A is
a vector of Lagrange multipliers in the usual sense. Letting the weight
matrix W = 5-1 (or its appropriate pseudo-inverse in the case that W
is positive semidefinite), Eq. (18) has a global minimum given by the
well-known weighted least squares solution:

( 19)

If W is in its simplest diagonal form, the requisite computations are
sparse and are readily implementable in flight software without
substantial computational penalty. The WLS allocator provides high
volumetric efficiency for most geometries and, although not as
general as the tailored inverse, it does not require optimization to
determine the parameters. In addition, the convex cost function in
Eq. (18) has a global minimum, whereas the tailored inverse may not
[9}. Finally, the WLS inverse provides solutions that only slightly
intersect the null space or are orthogonal to it in the case that W = I.
This has the implication, in the present application, of minimizing
local thrust loads and steering losses over the volume that re E Q"'.

In the event that the actuator degrees of freedom are aligned with
the principal axes of the constraint ellipsoids, a suitable choice for a
diagonal weighting matrix is to choose W such that

w. = [00, 0 o ]oJiiih
(20)

where Wi E jR2x2 is the ith diagonal block of W; ail and a a are
the principal axis lengths of Ei and 81 is the jth column of Bj•

The weights are the constraint ellipsoid dimensions normalized by
the relative control effectiveness. Pitch-yaw axis prioritization can be
achieved by setting to zero the roll elements of B prior to computing
Eq. (20). An empirical analysis using numerical optimization can
be used \0 show that this weight matrix yields a good approxima-
tion to the maximum-volume (or maximum pitch-yaw authority)
parametrization.

As with any linear allocator, if the commanded acceleration
exceeds the boundary of the particular AMS, the effector deflections
must change direction in order to access a larger subset of the
attainable moments. Suppose along some direction I the maximum
admissible particular moment has been determined; that
is, pre E o(Q).

The following theorem holds:

Theorem 2: For each pre E o(Q), there exists an e > o suchthat
(1 + e)!", E <t> if there exists a transformation R satisfying BR == B
such that (I + ,)RPI, E Q.

Proof" If pr, n Q' * 0, let pre = too+ to, where IJ., EO(Q)
and .6.0E Q". Because P is a linear transformation, (I + e)prc ==
.6.0+ IJ.s + e.6.:

f
where.6.6 E Q", IJ.,f E o(Q), aud S, + eIJ.s E Qt for

sufficiently small e. Suppose a transformation R exists such that
R(to s + ,to,) E o(Q) and Rtob E Q'; thus, (I + e)RPr, E Q. If
BR = B, then (I + ,)BRPr, = (I + e)r, E <l>because BRP ~ I
and pr E Q -> r E <P. 0

Remark J: Transformations satisfying BR = B must beofthefonn
R = I + N 1 + Nz + .,where I is the identity andN; is a projector
onto the kernel of B.

Remark 2: Two necessary conditions for the existence of R are that
Pf c n Q" is nonempty and span(B.6.o) = II. If Pr'e n Q' = 0, this
implies that the manifolds a(Q) and aCQ*) coincide at the pointPre'

The consequence of the stated theorem is as follows: if the
generalized inverse P allocates a control Pr'e such thai some subset
(but not all) of the controls is in the boundary of the admissible set Q
and those controls not in the boundary span the desired Objective,
then it is possible to find a transformation R that moves pre toward
the subspace of unsaturated controls but is invariant with respecttoB
(i.e., the "rotation" occurs into the kernel of B). This conditionis
conceptually illustrated in Fig. 3, where .6.s is embedded in the
constraint boundary and .6.0 is parallel 10 it.

Using Theorem 2 and given the aforementioned conditions,a
suitable transformation R can be determined as follows: suppose
.6.= pre and that .6.exceeds the boundary of the attainable set along
one or more dimensions. Let zs = .6.s + a where .6.s E oeD:) andthus
a = IJ. - .6.,\"the degrees of freedom of IJ. not embedded in the
boundary. It is possible to augment the zswith a vector that is invariant
with respect to B by projecting a into the kernel of B.

Let ;j fonn a basis for N(B), j = 1,2, .. 1/1 - II. A set of
constants x j is sought that minimizes

(21)

describing the norm square error between the intersection of the
control vector with the boundary aCQ) and the augmented control
vector. Let the matrix N B consist of columns ~1;2 ~m-n'

and write their linear combination as

L Xj;j = Nux
j=l ... m-n

(22)

&(>1)

to~
,~

too /r-;
\
\....-.

,/,/

,/,/
,/

Fig. 3 Null space transformation.
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Fig. 4 Concept reusable booster vehicle.

53 ft

To approximate the solution of

(23)

by minimizing Eq. (21), it follows that

(24)

and the augmented control is formed from

(25)

Note that N1J(N~Nn)-l N~ is an orthogonal projector onto the
kernel of B.rn the case of symmetric elliptical constraints, the vector
6.s can be determined directly from the ellipsoids R, because
6 = (6TRC'by('/2)b
ISThe ~n~lytic cons~aints enable direct computation of the
intersection of A with the constraint boundary. It is straightforward 1'0

show that the augmented control in Eq. (25) could be rewritten as
.6. = RA so as to satisfy Theorem 2.

A. Practical Considerations
In a practical implementation, the present approach to augmenting

the control allocation should be employed only when one or more
controls exceeds the saturation boundary; the computation of the
saturated control vector A.~is trivial to implement. In this scheme, the
system retains the linearity properties of the structured generalized
inverse over whatever volume of the particular set that inverse has
been designed to achieve, while satisfying the secondary metrics of
optimality inherent to a least-squares approach; for example,
vectoring in a space orthogonal to the null space so as to minimize
local parasitic loads on the thrust structure (strictly true onJy if
W = I). In the event that one or more actuators is saturated, the
augmenting command is computed and applied to access extents of
ihe attainable set not achievable using the generalized inverse alone.

It can be recognized that, in order for the augmented control to be
effective, it is necessary that the tangent hyperplane to the constraint
boundary associated with the saturated controls have nonzero angle
with respect to the null hyperplane. Because the augmentation
procedure approximates the solution of the constrained optimization
problem by locally projecting the allocation "error" into the null
space, the recovered allocation efficiency is less than unity and varies
with rc. In the event that the requested moment is infeasible, a
secondary computation must be employed to scale the command to
liewithin the feasible set. Nonetheless, numerical analysis concludes
that the efficiency can be substantially increased without requiring
iterative computation.

B. Implementation
in a flight software program, the proposed control allocator is

implemented as follows:
1)Compute any suitable P satisfying BP = I; for example, a VVLS

allocator.
2) Compute A = prc.
3) Compute the scalars c, = (8T RjI8i)-(1/2) associated with each

thrust vector effector. Ifno c, < l , then no augmentation is necessary
and A = A.
4) If at least one c, < I, at least one control has saturated. Porm the

saturated control vector A.\. from Bjs = Ci8i··
5) Compute D.. = A + N n(N1N B)-I N~(A.,. - A), where N 8 is a

basis for the null space of B. Tn many applications, although B
changes substantially due to time-varying mass properties, its kernel
N n remains approximately constant over relatively long intervals.
This can be used to the advantage of the implementation by
computing NB offline. The normalization step (N1N 8)-1 can be
omitted if /;j are orthonormal.

V. Example
A numerical example demonstrates the efficacy of the proposed

scheme using a nontrivial vehicle model. Consider the reusable
booster concept shown III Fig. 4. This vehicle system exhibits several
challenging features for thrust vector control allocation due to its
asymmetry. To maximize pitch trim control authority at maximum
dynamic pressure, the engine thrust plane is negatively canted to
align with the nominal center of mass location at this flight condition.
In addition, the engines are slightly canted inward to minimize
adverse moments due to engine shutdown timing errors. Finally, the

Table 1 Concept vehicle parameters

Parameter Value
Mass
RoU moment of inertia J xx
Pitch moment of inertia lyy
Yaw moment of inertia l.z
Cross product of inertia lx,-
Engine thrust
Center of mass location (from nose)

44650 Ibm
0.2158 x 105 slug· ft2
3.3031 x 105 slug . ft2
3.4301 X 105 slug . ft2
1.5470 x 103 slug . ft2
45000 lbf x 3

[-30.6500 0 -2.6400rr It

Table 2 Concept thrust vector parameters

Parameter Value

Thrust plane angle
Engine gimbal limit
Engine I gimbal from center ofmass
Engine 2 gimbal from center ofmass
Engine 3 gimbal from center of mass

-3.39 deg
6 deg, circular

[-21.21 0 -2.93Vft
[-21.35 1.45 -0.43 I" It
[-21.35 -1.45 -0.43Vft



380 ORR AND $LEGERS

Fig.5 Engine layout and TVC geometry (aft looking forward).

0.54·······;········,N.,
! O~ ······'·····l~

•~ -0.5

-1' v-:"":
1

0.5
-0.5 0

roll (radIs2)

Fig. 6 Total and particular AMS.

-, -1.5 -1

~'"..~'"
........ , .... ':, .

"~'.,'\.'., '
\' \.,

0.8

0.6

0.4

N-;; 0.2

"~ 0

,
",. ,

:'~~

".v:
,/: f, ,

... ,.. r ..
i ,
t ,...; ":".
,

,,,
,. ,,, .., .'

,'./', ,
""..>:?:

~......:'.,.

presence of wi.ngs below the fuselage symmetry plane yields a
nondiagonal moment of inertia tensor that couples the instantaneous
angular acceleration response to thrust vector inputs.
The general characteristics of the study vehicle at a reference flight

condition are given in Table 1. Mass property data are given in a
typical aircraft coordinate axis system with the origin at the center
of mass.
Engine and thrust vectoring data are given in Table 2. The engine

vectoring constraint is assumed to be radially symmetric (circular)
with respect to the undeflected (null) position. The engine layout and
thrust vector control (TVC) geometry are shown in Fig. S.

The control effectiveness matrix at this flight condition is

[

-00038 -59067 -30139 -06862

B= 29171 -00004 -2.9102 00039

-00001 27561 -00135 28055

0.6862 ]
0.0039

-2.8055

s:
u'6. -0.2

3.0215

-2.9107

0.0137

and these constraints yield an AMS volume of 3.007 (rad/s2)3.
Applying Eq. (20) with pitch-yaw axis priority, a suitable weighted
least-squares inverse is found to be

-0.4

-0.6

-0.8

-1L----'----:-:---:-------;C;,-------c--~
-1.5 -1 -0.5 0 0.5 1.5

roll (radJs2)
Fig. 7 Pitch-roll AMS projection with augmentation.
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Yaw-roll AMS projection with augmentation.

0.0000 0.1144 0.0000

-0.0984 -0.0001 0.0342

-0.0803 -0.1146 -0.0701
p=

0.0480 0.0002 0.1611

0.0802 -0.1143 0.0701

-0.0480 0.0001 -0.1611

The three-dimensional shapes of the total AMS and the particular
AMS are shown in Fig. 6. The three-dimensional volume accessible
using the generalized inverse is depicted in the interior. Thevolume~f
the particular set, computed using the gridded bisection method, IS

Baseline commanded

Table 3 Commanded actuator deOections at test point

Augmented commanded
Actuator Deflection, deg Extend (E)/Retract (R) Deflection, deg Extend (E)/Retract (R)

Engine 1pitch
Engine 1 yaw
Engine 2 pitch
Engine 2 yaw
Engine 3 puch
Engine 3 yaw

0.000
7.465
2.022
3.736
2.021
3.736

N/A 0.000 N/A
R 5.992 R
R 3.297 R
R 4.465 R
E 3.296 E
E 4.466 E
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Fig.9 Nozzledeflection directions at test point.

computed to be 2.033 (rad/s2)3 yielding an allocation efficiency of
'I = 67.6%. Within this volume, command linearity is achieved.
The proposed augmented method is applied to evaluate the

increase in allocation efficiency. The result of null command
augmentation is shown in Figs. 7 and 8. The three-dimensional AMS
has been projected into the pitch-roll and yaw-roll planes,
respectively. The boundary of the attainable set using only a
generalized inverse is denoted by 0(4)*), and the boundary using the
present approach is denoted by 0(<1>**).
The use of the augmented allocator substantially improves access

to the total AMS outside the linear boundary. The efficiency of the
augmented allocator is computed to increase to 91.9%, or a volume
of2.764 (rad/s2)'-
The most substantial increase in authority occurs in the lateral-

directional maneuvering plane, as seen in Fig. 8. A test point is
identified that exists near the boundary of the attainable set for
the augmented allocator but outside of the attainable set for the
generalized inverse alone. This test point corresponds to the
acceleration command of r(, = [1.072 0.000 -0.724 y, requir-
ing a simultaneous negative yawing moment near the maximum
positive roll angular acceleration. The commanded actuator deflec-
tions are given in Table 3 in terms of equivalent degrees of actuator
extension or retraction, and the resulting nozzle deflections with
respect to the limits are shown in Fig. 9. The control effector positions
using only the generalized inverse would fail to achieve the
commanded acceleration due to saturation of the engine I yaw
actuator. The augmented inverse achieves the command while
satisfying the constraints.

VI. Conclusions
A hybrid, high-efficiency method of control allocation for

complex thrust vector controlJed systems has been presented that
balances the benefits of the simple structured generalized inverse
with the ability to access a substantially larger portion of the
attainable set in the event that the control demands exceed the
capability of the linear allocation scheme. This method is particularly
well suited to vehicles with complex elastic dynamics and servo-
inertial coupling whose control design methods, stability analyses,
and flight certification processes rely on linearity of the control
allocator within the nominal operating envelope.
The present scheme is general in nature, supporting arbitrary

vehicle geometry, and scales linearly with the number of effectors.
Forward work may seek to extend the present results to time-varying
constraint sets so as to consider the dynamic alJocation problem in the

context of rapidly varying vehicle parameters, and may leverage the
utility of the ellipsoid techniques by expressing other metrics (such as
structural load constraints) in terms of ellipsoidal approximations.
Such approaches may yield useful algorithms that satisfy these
secondary objectives, further improving overaU system performance
and robustness.
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