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I. Introduction 

L EE and Bang [1] have recently analyzed optimal trajectories of 
an airship in the jet stream using a nonlinear point mass model 

developed in the relative wind frame. Using a point mass model for 
the elongated airship implies that the airship's yaw with respect to the 
relative wind frame is always zero; i.e., the side slip angle is zero. 
This is also demonstrated by the absence of side slip in the aerody
namic model. For the analysis in [1] a point mass model is adequate 
for analysis because the relative heading 1/J, flight path angle y, and 
bank angle¢ are slowly varying such that the rotational dynamics can 
safely be ignored. Unfortunately, in forming the point mass model, 
the authors improperly consider the contribution from the added 
mass of the airship. In general, the added mass should be treated as a 
tensor in formation of the dynamics [2,3]. In [ 1] the tensor properties 
of added mass are ignored and diagonal ej:m:;ents of the added mass 
matrix are added together along with the actual mass to form a scalar 
total mass mr. In addition, the added mass contribution is considered 
proportional to the inertial velocity of the airship rather than the 
relative airspeed. 

ll. Analysis 
Development of the force from added mass begins using the same 

three coordinate frames as [1]: an Earth-fixed inertial frame (I frame) 
Ox1y;z;. a local-level frame (h frame) Oxhyhzh, and a relative wind 
frame (w frame) Ox.,y.,z., . The wind and local-level frames are 
related by the transformation matrix cr,. The inertial velocity V1 is 
the combination of the relative flight velocity V and wind W 1 and is 
expressed as 

v, = v +cr.w, (I) 

where 
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(2) 

A fourth coordinate frame, the airship body frame (b frame) 
OxbYbZb, must be considered to establish the relationship between 
the airship body and wind frame. The body frame is aligned with the 
airship hull with the transformation from the wind to the body frame 
given by 

[ 

cos a 0 - sin a ] 
c~ = o 1 o 

sina 0 cosa 
(3) 

where a is the hull angle of attack and considered a control variable. 
The definition of a is consistent with the proposed models for 
propeller thrust, lift, and drag in Eqs. (8) and (10) of [1]. Relative 
flight speed in the body frame can then be written as 

(4) 

The added mass force on the airship hull from acceleration of the 
surrounding fluid can be found by examining the fluid's kinetic 
energy. Following the derivation in [4], the added mass force for a 
body with three orthogonal planes of symmetry can be expressed 
compactly in the body's coordinate system using the added mass 
matrix M0 : 

(5) 

The added mass matrix is defined as 

0 
(6) 

where rna.<' may• and ma~ are the same added mass elements discussed 
in [1]. For an airship with the hull being approximately a body of 
revolution, it can further be assumed that may ~ m 0 , . The angular 
velocity of the airship body with respect to the Earth-fixed frame 
appearing in Eq. (5) is defined as 

(7) 

where w w• the angular velocity of the wind frame with respect to the 
Earth-fixed frame, is 

(8) 

Dynamic equations of motion are derived in the wind frame; 
therefore, it is convenient to also express the force from added mass 
(5) in the wind frame: 



The added mass force on the hull can be written in compact form in 
terms of the state derivatives V, y, and t and the control variables a 
and rf> by defining 

0 
(10) 

where 

m2 = sinacosa(maJ' - m4 , ) 

(II) 

and using the wind frame kinematics from Eq. (7) in [1]. The final 
expression for the added mass force acting on the hull is 

m2Vcos rf> 

- m 1 V sinrj> 

- m 1 Vcos rj> 

m2 Vsinrj>cosy ] lv] 
(m2 siny + m.1 cosrj>cosy)V ~ 

- m1 Vsmrpcosy 1/J 

(12) 

Dynamic equations of motion for the airship point mass model 
are formed using Newton's second law. The force equilibrium is 
expressed as 

(13) 

where the total external force F has contributions from buoyancy B, 
thrust T, lift L, and drag D as outlined in Eq. (8) of [I]. A comparison 
of the dynamic equations found using the added mass force in 
Eq. (12) with the formulation in [I] is facilitated by considering the 
case when a is small (sin a is small compared to cos a) so that 
m1 @;l max and m2 @;l 0. The resulting dynamic equations found by 
combining Eqs. (12) and (13) then solving for the state derivatives are 

V = ..:...(T_c_o_s_a_-_ D__:....) -- --'('--m.::.g_-_8.:....) s_i_n ~y 
m + max 

. (T sina + L)cosrf> - (mg - B)cosy 
y= 

m(ww, cosrf>+ Wwy sinrj>) + --=---=c=--___:. _ __;;"'----'--'-
(m + max )V 

t = (Tsina + L) sinrp + m(ww, sinrp - Wwy cosrp) 

(m + max)Vcos y (m + max)Vcosy 

(14) 

with Wwx• Wwx• and Ww.c defined in [1]. Comparing Eq. (14) to the 
dynamic equations proposed in [I] two substantial differences 
appear. First, the total mass mT = m +max+ may + m0 , in [1] is 
replaced by m + max· Because may and rna: are an order of 
magnitude larger than both m and max• the total mass mT used is an 
order of magnitude too large. The second difference is that the wind 

components in Eq. (14) are multiplied by a factor mj (m + max) 
which will be significantly less than one because both m and mux are 
on the same order of magnitude. When a is not small, m2 in Eq. (12) 
cannot be neglected. The result is coupling between the velocity and 
angle equations in Eq. (14) where L, D, Wwx• Wwx• and Wwx will 
appear in all three dynamic equations. Because may is an order of 
magnitude larger than max• even a relatively small a of 7 deg may 
result in m2 being as large as m 1• 

ill. Conclusions 
The combination of all three diagonal elements of the added mass 

matrix with the actual airship mass results in a severe overestimation 
of the added mass's effect on the final dynamic equations in [I]. In 
addition, by treating the added mass contribution as proportional to 
the inertial velocity rather than airspeed of the airship hull, the wind's 
effect on the dynamic equations was also overestimated. The changes 
to the point mass dynamics do not alter the optimization method 
proposed in [I]; however, they may result in different optimal trajec
tories for the cases presented. 
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added mass term in the point mass model of our previous paper. The 
added mass term has been modified to generate trajectories in 
consideration of Eq. (14) in the Comments. Figure I shows 
minimum-time flight trajectories without jet stream and Fig. 2 
presents minimum-time trajectories under jet stream condition. 
Cases 1 and 2 show the original and modified results, respectively. As 
shown in both cases, the terminal time and boundary of trajectories 
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are decreased because the modified added mass and wind terms are 
accounted for the new optimization. The new added mass term is 
smaller than the original mass used in [1], which results in reduced 
maneuver time with increased speed. 

In addition, the trajectories with correct added mass term suff
iciently satisfy all terminal and path constraints, and their dynamic 
responses exhibit rather similar characteristics in comparison with 
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Fig. 1 Comparison of the original and updated results (minimum time without jet stream). 
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Fig. 2 Comparison of the original and updated results {minimum time with jet stream). 

the original and updated trajectories. Obviously, the error in the 
added mass term leads to con iderable difference in final 3-
dimensional trajectory as Fig . lc and 2c. However, it could be care
fully said that the original definition of the problem and objectives of 
the work in [1] with optimization approach presented in detail still 
provide some useful information on optimized airship trajectory 
generation by considering realistic constraints. 

With our best understanding, the authors find out some incorrect 
formulations in the Comments. In Eq. (10) of the Comments [2], it is 
written as 



where m1 = 111axcos2a + maysin2a, 1112 = sin a cosa(111ay - 111 0 _, ). 

However, the previous equation is derived as 

(C~)TMuC~ 

[ 000 0 
0 

= 0 

- sin a 0 

[ 

2 • 2 m0 _,cos a + 11!0 y Sin a 

= 0 

sinacosa(mav - 111 0 , ) 

0 sinacosa(111ay - max)] 

0 (I) 

l11 0 ,COs2a + 1110 xsin2a 0 

The last diagonal term is m3 = 1110 :cos2a + 111axsin2a, not equal to 
111 1• Therefore, the resulting dynamic equations of Eq. (14) in [2] 
should follow as 

. (Tcosa - D) - (111g - B) sin y v = ..:...._ __ __; _ _;__;'--__ .;_ 
mr 

111 . 
---Wwx 
m+max 

. (Tsina + L)cosrp - (111g - B) cosy + Va sinrjJ(mu:- 1110 . ) 

y= 
(m + max)V 

+ 111(Wwz cosrjJ + Wwy sinrjJ) 

(m + ll!ax)V 

. (Tsina + L) sinrjJ + VasinrjJ(maz - m ... ) 
v=~----~~~~~-=--~ 

(m + m ... )Vcosy 

+ m(ww, sinrjJ - WwycosrjJ) 
(m + 1110 x)Vcosy 

(2) 

The authors sincerely appreciate the effort made by Slegers and 
Brown with the Comments, which helped us to correct the improper 
derivation of the added mass term and verify the optimization results 
again with the correct governing equation of motion. 
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