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Cool Flame Propagation Speeds

Michael Foster and Howard Pearlman*

Department of Mechanical Engineering and Mechanics, Drexel University,
Philadelphia, USA

Abstract: Cool flames are studied at reduced-gravity in a closed, unstirred,
spherical reactor to minimize complexities associated with natural convection.
Under such conditions, transport is controlled by diffusive fluxes and the flames
are observed to propagate radially outward from the center of the reactor toward
the wall. Intensified video records are obtained and analyzed to determine the
flame radius as a function of time for different vessel temperatures (593-623 K)
and initial pressures (55.2-81.4 kPa) using an equimolar (¢ = 5) propane-oxygen
premixture. Polynomial-fits are applied to the data and differentiated to deter-
mine the cool flame propagation speeds. In nearly all cases considered, the flame
decelerates monotonically and in some cases, subsequently retreats towards the
center of the reactor. The flame speed is also tabulated as a function of the flame
stretch rate. Extrapolation of the cool flame speeds to zero stretch is then per-
formed to determine the “unstretched” cool flame propagation speeds.

Keywords: Cool flames; Flame speed; Low-temperature combustion; Reduced-
gravity

INTRODUCTION

Atlow (T < 650 K) and intermediate temperatures (650 K < T < 1000 K),
cool flames and multi-stage ignitions occur in many aliphatic hydrocarbon
fuel-air mixtures for which the chemistry is dominated by reactions that
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involve propylperoxy and hydroperoxy radicals. At higher temperatures,
production of hydrogen peroxide and its subsequent decomposition to
hydroxyl radicals HOe becomes increasingly important and leads to hot
ignition. To refine the chemical kinetic mechanisms associated with hydro-
carbon oxidation and understand the shifts in the temperature-dependent
pathways, many studies have been conducted with alkanes, alkenes, and
aromatics in different configurations. These include unstirred, static
reactors, continuously-stirred tank reactors (CSTR’s), pressurized-flow
reactors, and rapid compression machines (Pease, 1929; Newitt and
Thornes, 1937; Seakins et al., 1963; Gray and Felton, 1974; Wilk et al.,
1986; Koert et al., 1994; Curran et al., 1996). A comprehensive review of
experimental and numerical studies performed with different fuels at low
and intermediate temperatures is given by Griffiths and Mohamed (1997).
In closed stirred and CSTR studies, natural convection and diffusive
transport are suppressed to minimize spatial gradients and focus attention
on the physical chemistry of the problem (Griffiths, 1985; Griffiths and
Scott, 1987; Gray and Scott, 1990; Faravelli et al., 1998). However, hydro-
dynamics and diffusive transport have long been recognized to play impor-
tant roles in all unstirred cool flame and multi-stage ignition studies (Fine
et al., 1970; Griffiths et al., 1970; Barnard and Harwood, 1974; Pearlman,
1999; Fairlie et al., 2005). Also, numerical studies of thermokinetic oscilla-
tions and ignitions in closed reactors have recently begun to include
natural convection and diffusive transport (Campbell et al., 2005, 2006).
As such, the present study considers the reactive-diffusive cool flame
structure and its spatio-temporal evolution in a closed, static reactor
when transport is governed solely by diffusive fluxes and natural convec-
tion can be disregarded. Such conditions exist in a reduced-gravity
environment in which the Rayleigh number is sufficiently small
(Pearlman, 1999). Specific attention is given to the propagation speeds
associated with cool flames in a rich equimolar propane-oxygen premix-
ture to provide the first benchmark experimental data on diffusion-con-
trolled cool flame propagation speeds to further validate chemical kinetic
mechanisms at low and intermediate temperatures. Propane is selected
since it is the simplest alkane that exhibits a Negative Temperature
Coefficient (NTC) behavior (Pease, 1929, 1938; Day and Pease, 1940).

EXPERIMENTAL APPARATUS

A Mallard-Le Chatelier static, unstirred reactor is used to conduct the
experiments. The reactor is a fused-silica spherical vessel (i.d. = 10.2 cm,
wall thickness = 3 mm) housed in a box furnace (maximum temperature
of 873K). The vessel is initially preheated and evacuated to 2.7 Pa
(0.02 Torr) or below as determined with a vacuum thermocouple gauge.



The furnace temperature is monitored with a 0.020” type-K thermo-
couple. An equimolar premixture of propane and oxygen is prepared
by partial pressure gas mixing and stored in 300cc stainless-steel, gas
cylinders prior to testing.

The reactor pressure is monitored with a Setra Model 204 0172 kPa
pressure transducer (absolute accuracy: +0.19 kPa) mounted on the gas
inlet (cold side) of the reactor. Intensified video cameras image the reac-
tion from the top (oriented downward) and the side (orthogonal to the
top camera) of the furnace. The side camera is a Hamamatsu model
C5909 ICCD camera and the top camera is a Dalsa/SMD ICCD-
IM30P camera equipped with a fiber-coupled 18 mm Gen II UV image
intensifier. Both cameras are operated at maximum gain and image the
reactor through three 3.2mm thick, 6.4cm diameter quartz windows
spaced 1.27 cm apart used to minimize heat loss and improve temperature
uniformity within the furnace. Standard framing rates of 30 frames per
second are obtained.

The furnace with reactor, premixed gas mixing and delivery system,
and vacuum pump are mounted aboard NASA’s KC-135 reduced-gravity
aircraft and tests are conducted during free-fall maneuvers between 32 kft
and 24 kft. The reaction is monitored during the 20-23 s descent. Figure 1
shows a typical acceleration history detailing the normalized x, y, and
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Figure 1. Representative NASA KC-135 reduced-gravity aircraft acceleration
profiles obtained during free-float parabolic maneuvers. Acceleration values are
normalized by Earth’s gravitational acceleration.



z-components of acceleration as determined with a three-axis +2g
accelerometer, where the x and y components correspond to the horizon-
tal plane and z corresponds to the vertical plane relative to the aircraft.
All components of acceleration are approximately one-hundredth of
Earth’s gravity during free-fall, albeit accompanied by high-frequency
oscillations due to mechanical vibrations and aerodynamic stresses on
the aircraft. Each test begins by filling a pre-evacuated 50cc stainless-
steel sample cylinder to appropriate pressure. This 50cc cylinder is
separated from the reactor by a pneumatic, vacuum-tight solenoid valve.
Once near-zero gravity conditions are achieved as determined by the
accelerometer, the solenoid valve is opened and the vessel is filled to a
prescribed initial pressure. The solenoid valve is then closed and the reac-
tor is isolated.

EXPERIMENTAL RESULTS
Intensified Imaging and Image Analysis

At reduced-gravity, the associated Rayleigh number (Ra) is on the order
of 10° (or less), within the error bar (£500) of the empirical value needed
to suppress natural convection in a spherical reactor (Raiscar =~ 600)
(Tyler, 1966; Fine et al., 1970; Griffiths et al., 1970).

A typical sequence of propane cool flame images is shown in Figure 2
taken with the side camera at 68.9 kPa and 613 K. For these conditions,
the cool flame shown is the first stage of a two-stage ignition as seen in
the corresponding pressure history shown in Figure 3. Note that frames
(a)—(e), which are visible cool flames, occur in the circled region of the
pressure history.

Using a commercially available image analysis software program
(Igor Pro), line intensity profiles are taken vertically at two different hori-
zontal locations equidistant from the flame centerline and the average
horizontal pixel intensity value at each vertical position is tabulated as

(a) (b) (c) (d) (e)

Figure 2. Cool flame in an equimolar propane-oxygen premixture at 68.9 kPa
and 613K at reduced-gravity. Time between frames is 1/3s. Image contrast
enhanced for clarity.
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Figure 3. Pressure history associated with the cool flame shown in Figure 2.
Dotted region indicates range of pressures during which visible light emission
shown in Figure 2 is observed.

shown in Figure 4. Line-averaging reduces the intensifier Schott noise in
the video data. The flame location is then defined as the location associa-
ted with a 63% rise in the intensity value above the background noise
floor relative to the peak intensity value for each frame. A 7-point aver-
aging scheme (repeated three times) in addition to a 19-point least-
squares method is also used to smooth the experimental intensity value
data. To resolve line-of-sight integration errors, a three-point Abel
deconvolution is then applied to the smoothed data. The estimated error
bar on all reported radius values due to data analysis and post processing
is £2.5mm (%14 pixels).

A third-order polynomial fit is then applied to the flame radius (Ry)
data, differentiated, and used to determine the cool flame propagation
speed (Vi = dR¢/dt) as a function of time. Figures Sa-d show Ry and
V; as functions of time for different initial reactant pressures and wall
temperatures (T,,) equal to 593 K, 603 K, 613K, and 623 K, respectively.
In each figure, t = 0s corresponds to the initial flame radius obtained
from the first discernable video frame. It is noted that these reactive-dif-
fusive cool flames are not simply phase waves where different regions
oscillate at different phases; diffusive fluxes do play a significant role
(Fairlie et al., 2005). For the cool flames considered, the chemical times
are on the order of seconds (or longer) and not significantly shorter than
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the diffusion times. Estimates of the thermal and mass diffusion times given
by R?/« and RZ/DC3H8_02, are 42s and 34s, respectively. Note that the
diffusion coefficients (¢ = 61.4 mmz/s and Dc3pg.or = 76.7 mmz/ s) were
computed for an equimolar propane-oxygen mixture at 600 K and 50.6 kPa.

Also note that in all cases tested, the cool flame originates at (or
near) the center of the reactor and then decelerates as it propagates
radially outward towards the wall. Each curve corresponds to a separate
parabolic free-fall test aboard NASA’s reduced-gravity aircraft. In some
cases, the cool flame approaches the wall, stops expanding outwardly and
reverses direction as the location of the peak intensity retreats towards
the center of the reactor. Such behavior is indicated in Figure 5 by
negative flames speeds and has been observed numerically by Fairlie
and co-workers (Fairlie et al., 2005). Also note that the peak light inten-
sity decreases monotonically during the course of the flame propagation.
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Figure 5. Flame radius (closed symbols) and flame speed (open symbols) versus
time for different initial reactor pressures at fixed wall temperatures: T, = (a)
593K, (b) 603K, (c) 613K, (d) 623 K.



Flame Stretch

Spherically expanding reactive-diffusive cool flames are expected to be
affected by curvature and flow strain effects, i.e., flame stretch, in much
the same manner as spherically expanding premixed gas flames. Flame
stretch, a measure of the relative rate change of the flame front area
(Karlovitz et al., 1953), is given as k = 2V¢/R¢ for spherically-expanding
flames (Matalon, 1983; Law, 1988).

As a first step towards understanding stretch effects on cool flames,
Figures 6a—d plot the experimentally measured cool flame speeds versus
stretch rates for four different temperatures for different pressures. In all
cases, an exponential rise is observed. Near-zero values of the stretch rate
correspond to the cases when the cool flame resides in the vicinity of the
wall and negative values correspond to the cases when the cool flame
retreats radially inward. Note also that the values of flame stretch are
relatively small compared to those associated with high-temperature pre-
mixed gas combustion, due to the significantly smaller cool flame propa-
gation speeds.

At present, an expression that incorporates the effects of curvature,
heat loss, thermal expansion, and Lewis number on laminar cool flame
speeds does not exist as it does for premixed gas flames (Ronney and
Sivashinksy, 1989). While a recent two-step Sal’'nikov model augmented
with diffusive transport (Fairlie et al., 2002) suggests that cool flame
oscillations damp as Le increases (for Le > 1), the Sal’'nikov mechanism
is purely based on thermal feedback, not chain-thermal feedback that
is characteristic of hydrocarbon oxidation and cool flames. Also, paral-
lels with spherically expanding flames suggest that a linear relation
between flame speed and flame stretch rate is appropriate for flames with
moderate curvature and strain rates (Markstein, 1964; Clavin, 1985), i.e.,
Vi = VP — Lk where V7 is the unstretched, laminar burning velocity, L is
the Markstein length and x is the flame stretch rate. If a linear fit is
applied in the early and intermediate stages of the cool flame evolution,
prior to significant wall losses, the slope of the line L is negative as the
flame speed increases with increasing positive stretch rate; this suggests
the flames are unstable. Heat loss and preferential diffusion may provide
stabilizing mechanisms.

From the linear extrapolations, the unstretched laminar cool flame
propagation speeds for select temperatures and pressures are summarized
in Table 1. For the two cases extrapolated at 593 K shown in Figure 6a, the
dependence of flame speed on flame stretch (i.e., L) is approximately the
same. At 603 K, L increases weakly with increasing pressure, while only
two data sets were obtained at 613 K for 66.9 kPa due to the limited avail-
ability of NASA’s KC135 aircraft. For this temperature and pressure,
repeatability was questionable, which can perhaps be attributed to errors



Table 1. Unstretched cool flame propagation speeds
T (K) P (kPa) V¢ unstretched (mm/s)
593 71.0 46

593 70.3 66

603 55.2 60

603 67.6 72

613 66.9 103

623 62.1 40

623 66.2 70

623 68.3 96

associated with residual gas impurity between sequential tests, gas entry
effects, and g-jitter (the time-dependent variation in the acceleration due
to mechanical and aerodynamically induced vibrations). Furthermore,
at 623K, L has a nonlinear dependence on pressure as it increases from
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Figure 6. Flame stretch as a function of flame speed for different initial tempera-
tures: (a) 593K, (b) 603K, (c) 613K, (d) 623K.



62.1kPa to 62.7kPa, decreases from 62.7kPa to 66.2kPa and then
increases, decreases and increases yet again with increasing pressure.

Comparison with Numerical Prediction of Light Emission
from Excited Formaldehyde

Currently, the only model appropriate for propane oxidation at low and
intermediate temperatures that includes diffusive fluxes of heat and spe-
cies has been recently reported by Fairlie and co-workers (2005). Using
the EXGAS detailed chemical kinetic model (Warth et al., 1998) appro-
priate for propane in the temperature range 600-2000 K, a reduced mech-
anism with 58 species and 378 reactions was developed, extended to
include diffusion of heat and species, and solved numerically. While
shown to be more reactive than the experimental data, an increase in
the radius of the peak light emission from excited formaldehyde was pre-
dicted followed by a slight retreat of the peak intensity towards the center
of the reactor, at least in the case of 593 K and 46.7 kPa (Fig. 3 of Fairlie
et al., 2005). Qualitatively, the trend is similar to the experiments conduc-
ted at 68.3 kPa and 70.3 kPa at 593 K shown in Figure 5a. To further vali-
date the mechanisms and refine the rate constants, if needed, additional
numerical computations and higher fidelity experiments with species
concentration measurements are obviously needed.

CONCLUSIONS

Experimental data on cool flame radius and cool flame propagation
speeds are reported for propane oxidation under pure diffusive con-
ditions. The flames decelerate as they propagate radially from the center
towards the walls and in select cases, the peak intensity subsequently
moves inwards towards the center. Qualitatively, a similar dependence
is predicted by a recently reported reduced propane oxidation mechanism
(Fairlie et al., 2005). Additionally, the first plots of cool flames speed ver-
sus flame stretch are reported showing the flame speed increases with
increasing stretch rate. A linear fit for select cases is then used to extrapo-
late the unstretched cool flame propagation speeds for the temperatures
and pressures considered.
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