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Application of Dynamic System Identification to
Timber Bridges

S. T. Peterson1; D. I. McLean2; and D. G. Pollock3

Abstract: A method of global nondestructive evaluation for identifying local damage and decay in timber beams was developed in
previous analytical studies and verified experimentally using simply supported beams in the laboratory. The method employs experimental
modal analysis and an algorithm that monitors changes in modal strain energy between the mode shapes of a damaged structure with
respect to the undamaged structure. A simple three-girder bridge was built and tested in a laboratory to investigate the capability and
limitations of the method for detecting damage in a multimember timber structure. The laboratory tests showed that the method can
correctly detect and locate a simulated pocket of decay inflicted at the end of a girder as well as detect a notch removed from the midspan
of a girder. The tests showed that the method can correctly detect damage simultaneously at two locations within the bridge, but also that
large magnitudes of damage at one location can mask smaller magnitudes of damage at another location. When a calibrated baseline
model is used to represent the undamaged state of the bridge, the results show that the method of nondestructive evaluation is able to
detect each case of inflicted damage, but with some increase in localization error.

CE Database keywords: Bridges, wooden; Vibration tests; Nondestructive tests; Damage.

Introduction

Nondestructive evaluation~NDE! of wood is the science and art
of determining the material properties and/or structural capacity
of individual members or for an entire timber structure without
impairing the member or structure in its usefulness for its in-
tended purpose. A number of methods have been previously de-
veloped and implemented in the field of NDE for wood, including
visual inspection, stress wave, drill resistance, radiography, ultra-
sonics, and deflection/vibration analysis~Emerson et al. 1998!.
Many of these methods are performed on a very localized scale
and the evaluation of an entire structure using these methods can
be very time consuming and inefficient. Thus, it is desirable to
develop a method of nondestructive testing for timber structures
that can identify damage or decay from a global perspective. The
method investigated in this study is deflection/vibration analysis,
specifically experimental modal analysis.

In conjunction with experimental modal analysis, a method for
identifying and locating the damage within a structure is needed.
In this investigation, a method of damage localization was se-
lected that is based on changes in modal strain energy as an in-
dicator of localized damage or stiffness loss in a structure. In the

literature, this method is often referred to as the damage index
method. The method was developed for application to a wide
range of structural systems. Previous studies have been published
demonstrating the use of the damage index method to localize and
estimate the severity of damage within a structure using a limited
number of modal parameters for steel plate girders and highway
bridges~Bolton et al. 1998; Stubbs et al. 1998!. Several analytical
studies have been published which verify the performance of this
damage localization and severity estimation algorithm~Garcia
and Stubbs 1996; Stubbs et al. 1997; Stubbs et al. 2000; Park
et al. 2001!. A more extensive literature search was presented
previously~Peterson et al. 2001a!in support of the selected dam-
age localization algorithm, and an extensive development of the
method was given by patented@N. Stubbs, ‘‘Apparatus and
method for damage detection,’’ U.S. Patent No. 5,327,358
~1994!#.

In a previous paper~Peterson et al. 2001a!, the method of
damage localization was applied to timber beams through analyti-
cal evaluations performed on a simply supported timber beam
plane stress model. Following the analytical study, experimental
impact vibration tests were performed on a timber beam in the
laboratory and the damage localization analysis repeated~Peter-
son et al. 2001b!. The experimental tests showed the ability of the
damage localization algorithm to successfully detect and locate
the inflicted damage. This was done to investigate the capabilities
and limitations of using the damage localization algorithm for
locating inflicted damage in timber beams.

To further develop the use of the method of global NDE for
evaluating a timber structure, a simple bridge model was built in
the laboratory to experimentally investigate the capabilities and
limitations of the technique in locating damage within a more
complex timber system. Damage to the timber bridge was in-
flicted to represent a pocket of decay at the end of a member as
might be typical in an actual timber structure. Other damage cases
were designed to investigate the use of the technique for detecting
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and locating small magnitudes of damage and damage at multiple
locations within the bridge.

In this paper, the method of damage localization is applied to
experimental laboratory tests on a three-girder timber bridge.
Based on the results of the experimental testing and damage lo-
calization analyses, the effectiveness of using the method of glo-
bal NDE for identifying damage or decay in timber structures is
demonstrated. The laboratory tests were conducted in an effort to
investigate the applicability of the method of NDE to performing
a global evaluation of a timber structure to identify and locate
possible areas of damage or decay. The areas identified within the
timber structure by the global evaluation would then be investi-
gated further using a more localized form of NDE~e.g., ultrason-
ics! to confirm the damage and better assess the magnitude or
severity of the damage or decay. Depending on the location and
magnitude of the damage or decay, a decision would then be
made to repair or replace the damaged member to maintain the
integrity and usefulness of the structure.

Three-Girder Laboratory Bridge

A three-girder laboratory bridge model was built at Washington
State University to apply the technique of dynamic system iden-
tification to a timber system. The bridge, shown in Figs. 1 and 2,
consisted of three girders measuring 115 mm~4.5 in.!3 160 mm
~6.25 in.!in cross section with a span of 4.8 m~15 ft.–10 in.!. The
decking boards were 25 mm~1 in.! 3 150 mm ~6 in.! in cross
section and 1.8 m~6 ft.! long. The longitudinal modulus of elas-
ticity ~MOE! valuesEx as determined by stress wave time for
each of the three girders and the deck boards are shown in Table
1. The ends of the bridge girders were supported on steel I beams

as shown in Fig. 2. Steel pin supports were fabricated and inserted
between the bridge girders and the supporting steel beam directly
over the web of the I beam.

Experimental modal tests were performed on the undamaged
laboratory bridge to obtain the modal parameters needed—natural
frequencies of vibration and corresponding mode shapes. Accel-
erometers were placed on the top of the bridge deck located over
the supports and at 1/6 points along the span as shown in Fig. 2.
Three different configurations of the accelerometers were used to
obtain the modal parameters of the bridge. For the first configu-
ration, the accelerometers were set up as described, directly over
the center of Girder 1. For Configurations 2 and 3, the acceler-
ometers were similarly located directly over the center of Girder 2
and Girder 3, respectively. For each configuration of accelerom-
eter setup, the bridge was excited into its modes of vibration by
impacting the bridge directly over the center of Girder 3 at the3

4

point along the span. This impact location along Girder 3 was
selected so that both flexural and torsional modes of vibration in
the bridge could be excited simultaneously, and the3

4 point was
selected so that the first and second flexural modes could be ex-
cited in the simply supported timber bridge. Data acquisition was
used to record data from each accelerometer and from the instru-
mented impact hammer at 1,000 Hz sampling rate for 4,096
points of data. To improve the experimentally obtained mode
shape coordinates, the impact tests were repeated ten times for
each accelerometer configuration in order to average out some of
the noise present in the experimental measurements. A statistical
analysis of the experimental data obtained from tests 1–10
showed that the coefficient of variation between mode shape co-
ordinate values was below 9%. From the experimental tests, five
modes of vibration were obtained. The mode shapes are shown in
Fig. 3, and the natural frequencies of vibration for the pristine or
undamaged structure are given in Table 3. It should be noted that

Fig. 1. Plan of laboratory bridge model

Fig. 2. Laboratory bridge model

Table 1. Longitudinal Modulus of Elasticity of Bridge Girders and
Decking

Ex

GPa~psi!

Girder 1 13.93 (2.023106)
Girder 2 11.78 (1.713106)
Girder 3 13.27 (1.923106)
Decking 9.17 (1.333106)



transverse bending modes were ignored because these modes
were not specifically excited and did not show up in the frequency
response function data.

Inflicted Damage

Once the modal parameters for the undamaged bridge model were
determined, damage was inflicted on the bridge. Since it was of
interest to test the ability of the technique to locate damage and
decay typically found in timber structures, Damage Case 1 con-
sisted of a pocket removed from the end of Girder 1 to simulate a
pocket of decay. Inspection of actual decay at the ends of timber
beams shows a region or pocket of decayed wood that crumbles
easily and does not contribute at all to the stiffness at the end of

the beam. Located around the region of decay is a ‘‘shell’’ of
semisound wood that acts alone to transfer load to the supporting
elements or foundation on which the beam is supported. Thus, to
simulate decay at the end of Girder 1, a pocket of sound wood
was removed as shown in Fig. 4. The removed pocket measured
approximately 85 mm~3.38 in.!3 125 mm~4.88 in.!3 235 mm
~9.25 in.! deep. This left a shell of sound wood approximately
20-mm ~0.75 in.! thick around the perimeter of the cross section
at the end of Girder 1. It should be noted that the damage inflicted
for Damage Case 1 was present through all of the subsequent
tests.

Damage Case 2 consisted of a 32-cm~1.25 in.!diameter hole
drilled through the neutral axis of Girder 3, located at midspan
~Fig. 5!. For the tests conducted on the bridge, the sensitivity of
the technique in correctly detecting smaller magnitudes of dam-
age was of interest. Damage Case 2 corresponds to a 0.8% reduc-
tion in the bending moment of inertia of the girder cross section.
A hole through the neutral axis was first inflicted, and subsequent
tests considered cases in which this hole was extended as a notch
that stretched progressively toward the bottom face of Girder 3.
The dimensions of the notch used to simulate damage for the
various cases are given in Table 2. Damage Case 3 is shown in
Fig. 6. For Damage Case 4, the notch is extended through the
tension face of Girder 3.

The modal impact tests as described previously for the modal
tests conducted on the undamaged bridge were repeated for each
of the damage cases considered. The modal parameters were ob-

Fig. 3. Experimentally obtained mode shapes

Fig. 4. Simulated pocket of decay–Damage Case 1

Fig. 5. Inflicted Damage Case 2

Table 2. Dimensions of Inflicted Damage

Damage
Case

Notch width
cm ~in.!

Notch depth
cm ~in.!

2 3.18 ~1.25! 3.18 ~1.25!

3 3.18 ~1.25! 6.35 ~2.5!

4 3.18 ~1.25! 8.89 ~3.5!



tained and the experimental mode shapes were used with the
damage localization algorithm to try to locate the inflicted dam-
age. The natural frequencies of vibration identified for each of the
Damage Cases are shown in Table 3.

Damage Localization Algorithm

To localize the inflicted damage within the bridge model, a
method of damage localization developed previously~Stubbs
et al. 1995!was used. The damage localization algorithm was
derived such that differences in modal strain energy between the
undamaged structure and the damaged structure provide a basis
for identification of localized damage. Shannon’s sampling theory
~Park and Stubbs 1995; Stubbs and Park 1996!was used to inter-
polate the experimental mode shapes and divide the structure into
j elements. The algorithm used to calculate the damage indicator
for the jth element and thei mode,b i j , is given below.

b i j 5
11Fi j*

11Fi j

5

F E
j
$f i9* ~x!%2dx1E

0

L

$f i9* ~x!%2dxG E
0

L

$f i9~x!%2dx

F E
j
$f i9~x!%2dx1E

0

L

$f
i
9~x!%2dxG E

0

L

$f i9* ~x!%2dx

(1)

The derivation of Eq.~1! is discussed in Stubbs et al.~1995! or
Peterson et al.~2001a!. It should be noted that the termsf i~x! in
Eq. ~1! are vectors of mode shape coordinates for a single beam
or girder, but denote a matrix describing the mode shape corre-
sponding to Modei for a bridge or structure. Previously, each of
the mode shape vectors were divided by its Euclidean norm to
normalize the mode shape. Here again, each mode shape coordi-
nate in the mode shape matrix was divided by the Euclidean norm
of the matrix to obtain a normalized mode shape matrix. To sim-
plify the damage localization analysis, the mode shape matrix was
split into three mode shape vectors, one for each of the girders
used for the bridge. The damage localization algorithm was then
used to compare the normalized mode shape vector for each
girder from each of the damage cases versus the corresponding
normalized undamaged mode shape vector. To account for all of
the modes available, NM, the damage indicator value for a single
elementj is given as

b j5
( i 51

NM NUM i j

( i 51
NM DENOMi j

(2)

where NUMi j 5numerator of b i j in ~1! and DENOMi j

5denominator ofb i j in Eq. ~1!.
Finally, the damage indicator values for each elementj are

transformed into the standard normal space and hypothesis testing
is used to classify the elements into one of two classes:~1! the
elementj is undamaged or~2! the elementj is damaged. Damage
indicator values are transformed into the standard normal space
using the following equation:

Zj5
b j2mb j

sb j
(3)

wheremb j5mean ofb j values for allj elements andsb j5 stan-
dard deviation ofb j for all j elements. A threshold value is judge-
mentally selected and used to determine which of thej elements
are possibly damaged~e.g.,Z j.2 indicates damage at Memberj
within a 95% confidence interval!. The threshold level is left to
the user to define based on what level of confidence is required
for localization of damage within the structure. If the global
method of damage localization is used in conjunction with other
more localized methods of detection, a lower threshold may be
permissible. This would likely result in a higher number of indi-
cations of damage~including false positives!which could then be
investigated further using a more localized method of detection.

Damage Localization: Experimental Parameters

To perform the damage localization analysis, the damaged mode
shape vectors were compared to the corresponding undamaged
mode shape vectors using the damage localization algorithm
given previously. The analysis was made on a girder by girder
basis to investigate the ability of the algorithm to localize the
inflicted damage present within the bridge model. For the analy-

Fig. 6. Inflicted Damage Case 3

Table 3. Natural Frequencies of Vibration

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Damage f 1 ~Hz! f 2 ~Hz! f 3 ~Hz! f 4 ~Hz! f 5 ~Hz!

Undamaged 12.207 14.160 22.949 42.969 48.096

1a 11.963 13.916 22.705 41.504 46.387

2b 11.963 13.916 22.705 41.504 46.143

3c 11.474 13.428 22.949 41.748 45.410

4d 10.253 12.939 22.461 41.259 45.654
aSimulated pocket of decay at end of Girder 1.
b32-mm diameter hole through NA of Girder 3 at midspan.
cHole of Case 2 extended toward tension face as a notch.
dNotch extended through tension face of Girder 3.



sis, the thresholdZj value was generally set atZ j.2 indicative of
damage at Elementj within a 95% confidence interval. Wherever
more than one mode of vibration was used to localize the inflicted
damage, the modes were combined as given in Eq.~2!.

From the results of the analysis for Damage Case 1, it was
concluded that the algorithm was able to correctly detect and
locate the simulated pocket of decay at the end of Girder 1. The
damage indicator values ranged between 2.0 and 2.4 over the
extent of the simulated pocket of decay. Fig. 7 is a plot of damage
indicator values for Girder 1 corresponding to Damage Case 1.
Modes 4 and 5 were the most sensitive to damage present at the
end of a girder. Consequently, these were the only mode shapes
used to localize the inflicted damage for Case 1. In considering
Modes 4 and 5, the damage localization algorithm showed only
one false positive indication of damage over the other areas of the
bridge, located near the 1/3 point of Girder 2.

For Damage Case 2, the analysis showed some indication of
damage near the midspan of Girder 3. However, the algorithm
indicated that the damage was located approximately 230 mm~9
in.! away from the correct location at the midspan of Girder 3.
Due to the location of the inflicted damage for Cases 2–4, Modes
1, 2, and 3 were the most sensitive to the effects of the damage.
Thus, Modes 1, 2, and 3 were used to attempt to detect and locate
the inflicted damage. Damage indicator values for Girder 3 are

shown in Fig. 8. Considering Modes 1, 2, and 3, the damage
localization algorithm also showed one false positive indication
of damage at the midspan of Girder 1.

In addition to the inflicted damage at the midspan of Girder 3,
the damage localization algorithm was also able to correctly de-
tect the simulated pocket of decay present at the end of Girder 1
if the threshold is set atZj.1.9 ~94% confidence interval!. Again,
Modes 4 and 5 were used to locate the simulated pocket of decay.
In the presence of the inflicted damage at Girder 3, the damage
localization algorithm shows one false positive indication of dam-
age located at 3.3 m in Girder 1. The damage localization algo-
rithm also showed two additional false positive indications of
damage within the bridge, located along Girders 2 and 3. Fig. 9
shows the ability to localize the simulated pocket of decay in
Girder 1 with the additional damage to Girder 3 also present.

For the analysis of Damage Case 3, the damage localization
algorithm demonstrated a more precise localization of the in-
creased severity of inflicted damage at the midspan of Girder 3.
The plot of damage indicator values in Fig. 10 shows the damage
located approximately 110 mm~4.3 in.! away from the correct
location of the inflicted damage. However, the analysis also
showed two additional false positive indications of damage, lo-

Fig. 7. Damage indicator values for Damage Case 1, Girder 1,
Modes 4 and 5 considered

Fig. 8. Damage indicator values for Damage Case 2, Girder 3,
Modes 1, 2, and 3 considered

Fig. 9. Damage indicator values for Damage Case 2, Girder 1,
Modes 4 and 5 considered

Fig. 10. Damage indicator values for Damage Case 3, Girder 3,
Modes 1, 2, and 3 considered



cated along Girders 1 and 2. With the increased severity of dam-
age located at the midspan of Girder 3, the algorithm was no
longer able to correctly detect and locate the simulated pocket of
decay at the end of Girder 1.

Finally, for Damage Case 4, the damage localization algorithm
was able to correctly detect and locate the inflicted damage very
near the exact location at the midspan of Girder 3. The algorithm
was able to locate the damage within 60 mm~2.4 in.! from the
correct location of the inflicted damage. The analysis showed only
one additional false positive indication of damage along Girder 1.
As with Damage Case 3, the simulated pocket of decay at the end
of Girder 1 could no longer be detected. Fig. 11 shows the dam-
age indicator values for Damage Case 4. Table 4 shows a sum-
mary of the performance of the damage localization algorithm in
identifying and locating the damage inflicted on the bridge when
experimental undamaged modal parameters are used.

Calibrated Baseline Model

Since the modal parameters for an as-built or pristine timber
structure in the field will be unknown, the undamaged structure
must be modeled using a computer analysis to approximate the
baseline modal parameters. To do this for the laboratory bridge, a
finite-element model consisting of three-dimensional~3D! beam
elements was developed. A stress wave timer was used in the
laboratory to obtain initial values for the stiffness properties of the
structural members used to build the bridge. The model was de-
veloped using the initial stiffness values and was calibrated ac-
cording to the calibration process described by Stubbs and Oseg-
ueda ~1990a,b! and Stubbs and Kim ~1996! using the
experimentally measured natural frequencies of vibration.

The material properties modified to calibrate the finite-element
model included the support stiffness, the longitudinal modulus of
elasticity~MOE! of each of the three girders~separately!, and the
longitudinal MOE of the decking members~uniformly!. Though
the stiffness of the supports in the laboratory were not experimen-
tally quantified, the tests showed small modal displacements at
the ends of each girder. The support stiffnesses of the finite-
element model were adjusted such that the output mode shapes
had similar end displacements as were obtained from the experi-
mental mode shapes. The remaining calibration of the baseline
model was made by adjusting the stiffness of the girders and the
decking until the natural frequencies of the finite-element model
closely matched those measured experimentally. The natural fre-
quencies of the calibrated model are given in Table 5. The stiff-
ness properties for each of the structural members initially mea-
sured using stress wave times as well as the stiffness properties of
the calibrated baseline model are given in Table 6 and show that
the calibration process yielded a reasonable model of the labora-
tory bridge. The large difference between measured and calibrated
Ex values for the decking members may also include assumptions
involving the connection of the deck members to the girders. Full
composite action was assumed for the computer model while the
laboratory model is likely less than fully composite. Thus, the
large difference inEx values for the decking members is not
considered an indication of an unreasonable baseline model of the
laboratory bridge.

A frequency analysis was performed on the calibrated finite-
element model to obtain the modal parameters needed. The mode
shapes for the first five modes were output and interpolated using
Shannon’s sampling theory used in place of the experimentally
measured mode shapes for the undamaged state of the bridge.

Use of Calibrated Baseline Model For Damage
Localization

Using the mode shapes from the calibrated baseline model in
place of the experimental mode shapes for the undamaged state of
the bridge, the analyses were repeated to try to localize the in-
flicted damage for the situation where the undamaged or baseline
modal parameters were unknown. For Damage Case 1, Modes 4

Fig. 11. Damage indicator values for Damage Case 4, Girder 3,
Modes 1, 2, and 3 considered

Table 4. Performance of Damage Localization Analysis: Experimen-
tal Parameters

Damage

Girder 3
damage

identified

Girder 1
damage

identified

Damage
indicator

magnitude

Localization
error

cm ~in.!
False

positives

1 — Yes 2.0–2.4 0 1
2 Yes Yes 2.2 23~9! 1
3 Yes No 2.2 11~4.3! 2
4 Yes No 2.6 6~2.4! 1

Table 5. Natural Frequencies of Vibration

Mode

Experimental
undamaged

f i ~Hz!

Calibrated
baseline model

f i ~Hz!
Percent

difference

1 12.207 12.262 20.45
2 14.160 14.255 20.67
3 22.949 23.378 21.87
4 42.969 44.996 24.72
5 48.096 51.239 26.54

Table 6. Material Property Values

Experimental
~stress wave!

GPa~psi!

Calibrated
baseline model

GPa~psi!

Ex - Girder 1 13.94 (2.023106) 15.65 (2.273106)
Ex - Girder 2 11.78 (1.713106) 11.05 (1.603106)
Ex - Girder 3 13.27 (1.923106) 13.30 (1.933106)
Ex - Decking 9.17 (1.333106) 5.47 (0.793106)



and 5 are considered and the simulated pocket of decay was cor-
rectly located at the end of Girder 1. In using the mode shapes
from the calibrated baseline model to approximate the undamaged
modal parameters, the algorithm identifies the simulated pocket of
decay from the end of Girder 1 to approximately 180-mm~7 in.!
deep. Since the removed pocket extended 235 mm~9.25 in.! into
the end of Girder 1, the error in damage localization is 50 mm~2
in.!. In addition, one false positive indication of damage along
Girder 1 was identified. Considering Modes 4 and 5 for Girders 2
and 3, only one false positive indication of damage is shown
along Girder 2. The damage indicator values for Damage Case 1
are shown in Fig. 12.

In considering Damage Case 2, the damage localization algo-
rithm gives some indication of the 32-mm diameter~1.25 in.!hole
drilled through the neutral axis of Girder 3, but the damage is
identified 43 mm~16.7 in.! away from the true location of the
inflicted damage. Modes 1, 2, and 3 were used to identify and
locate the inflicted damage at the midspan of Girder 3. For the
analysis of the inflicted damage at the midspan of Girder 3, the
algorithm also showed two false positive indications of damage
located along Girders 1 and 2. Fig. 13 shows the damage indicator
values for Damage Case 2 with the calibrated baseline model
used to approximate the baseline modal parameters.

When the inflicted damage corresponding to Damage Case 2 is
present, the simulated pocket of decay at the end of Girder 1 is
also correctly identified using Modes 4 and 5. For the analysis of
Damage Case 2, the algorithm performed better in correctly de-
tecting the simulated pocket of decay than for the analysis of
Damage Case 1~Fig. 14!. However, two false positive indications
of damage within the bridge are also identified by the analysis.

Using Modes 1, 2, and 3 for the analysis of Damage Case 3,
the damage localization algorithm gave an indication of the in-
flicted damage at the midspan of Girder 3 with an increased pre-
cision in the damage localization. Fig. 15 shows that the algo-
rithm identified the damage approximately 330 mm~12.9 in.!
away from the true location of the inflicted damage. For Damage
Case 3, only one false positive indication of damage is identified
along Girder 2. As previously observed, the simulated pocket of
decay at the end of Girder 1 could not be correctly localized with
the increased magnitude of inflicted damage for Case 3 present at
the midspan of Girder 3.

For Damage Case 4, the analysis showed that the damage lo-
calization algorithm identified the inflicted damage within 110
mm ~4.3 in.! of the correct location. Fig. 16 shows the damage
indicator values along Girder 3 for Damage Case 4 considering
Modes 1, 2, and 3. Upon reviewing the results for Girders 1 and
2, only one false positive indication of damage is identified along

Fig. 12. Damage indicator values for Damage Case 1, calibrated
baseline model Girder 1, Modes 4 and 5 considered

Fig. 13. Damage indicator values for Damage Case 2, calibrated
baseline model Girder 3, Modes 1, 2, and 3 considered

Fig. 14. Damage indicator values for Damage Case 2, calibrated
baseline model, Girder 1, Modes 4 and 5 considered

Fig. 15. Damage indicator values for Damage Case 3, calibrated
baseline model, Girder 3, Modes 1, 2, and 3 considered



Girder 2. Table 7 shows a summary of the performance of the
damage localization algorithm in identifying and locating the
damage inflicted on the bridge when the calibrated baseline model
is used to approximate the undamaged modal parameters.

Conclusions

The impact vibration tests conducted in the laboratory and subse-
quent damage localization analysis showed that the simulated
pocket of decay inflicted in the end of Girder 1 can be correctly
identified for simulated decay extending 235 mm~9.25 in.! into
the girder. In addition, inflicted damage equivalent to a 0.8% re-
duction in the bending moment of inertia of Girder 3 can also be
correctly identified at the midspan of the girder. For Damage
Cases 2–4, as the magnitude of the inflicted damage at the mid-
span of Girder 3 was increased, the magnitude of the damage
indicator values also increased. This is a similar trend to that
found for simply supported timber beams~Peterson et al. 2001b!.
Using the standard normal damage indicator values and hypoth-
esis testing discussed previously, this indicates that the inflicted
damage can be detected more confidently as the severity of dam-
age increases. In addition to the increased confidence of damage
detection, the analysis also shows that the algorithm used has
more precision in correctly locating the inflicted damage as the
severity increases.

For the analysis following Damage Case 2, the analysis was
able to correctly detect and locate the simulated pocket of decay
at the end of Girder 1 as well as the damage at the midspan of
Girder 3. However, the ability to detect the simulated pocket of
decay is lost as the severity of damage at the midspan of Girder 3
is increased to Damage Case 3. From the experimental Damage

Cases considered, it is concluded that the presence of the in-
creased magnitude of localized damage at the midspan of Girder
3 may have had a dominating effect on the lower modes of vibra-
tion such that the simulated pocket of decay at the end of Girder
1 could no longer be detected. In the interest of applying this
method of localized damage detection to actual timber structures,
it is noted that the presence of larger magnitudes of damage in
one area of the structure may prevent the detection of smaller
magnitudes of damage at other locations within the structure.

Since the undamaged modal parameters will not be available
for an actual timber structure, a finite-element model was con-
structed and calibrated to represent the undamaged state of the
bridge. When the undamaged modal parameters of the bridge are
approximated using the calibrated baseline model, the analysis
again demonstrated the ability to detect each of the damage cases.
However, using approximate modal parameters for the undam-
aged state of the bridge in the analysis resulted in greater local-
ization error. Similar trends are noted in confidence of damage
detection and error in localization for the analysis using the cali-
brated baseline model as for the analysis using the experimental
undamaged modal parameters.

One or two false positive indications of damage were shown
for each of the analyses conducted. As discussed by Stubbs and
Garcia ~1996a!, the damage localization algorithm is prone to
false positive indications of damage when, simultaneously, the
element size becomes small and the element is located at the node
point of a mode shape. It was noted that, for the majority of the
false positive indications of damage encountered in the analyses,
the false positive was near a possible node point for either Mode
2 or Mode 5 within Girder 2. While the tendency of the algorithm
to make false positive indications of damage is due to a math-
ematical instability, the algorithm actually performed very well in
indicating only one or two false positives over the entire bridge.
Furthermore, the identification of several false positive indica-
tions of damage in an actual field investigation of a timber struc-
ture would mean that a small number of additional areas of the
bridge would need to be investigated further using more localized
forms of NDE, such as ultrasonics. This is not considered pro-
hibitive in applying the technique to the nondestructive evaluation
of a timber structure.

Based on the performance of the method of global NDE with
the inflicted damage cases in the laboratory bridge, it is concluded
that the method of global evaluation can be used with other more
localized methods to perform a field evaluation of an actual tim-
ber structure. When used in conjunction with other more localized
forms of NDE, the tendency of the algorithm to make false posi-
tive identifications of damage poses only a small problem. A more
significant obstacle in implementing the use of the method of
NDE is that large magnitudes of damage or decay at one location
within the structure may mask or hide smaller magnitudes of
damage or decay at other locations. From the analyses presented
here, as well as past experience in applying the method of NDE to
timber beams~Peterson et al. 2001a,b!, it is recommended that
the analysis consider each of the available modes independently
as well as combined to make the best overall evaluation of the
timber structure.
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Fig. 16. Damage indicator values for Damage Case 4, calibrated
baseline model, Girder 3, Modes 1, 2, and 3 considered

Table 7. Performance of Damage Localization Analysis: Calibrated
Baseline Parameters

Damage

Girder 3
damage

identified

Girder 1
damage

identified

Damage
indicator

magnitude
Error

cm ~in.!
False

positives

1 — Yes 1.7–2.0 5.1~2! 2
2 Yes Yes 2.3 42.4~16.7! 2
3 Yes No 2.7 32.8~12.9! 1
4 Yes No 2.7 10.9~4.3! 1



Notation

The following symbols are used in this paper:
Ex 5 longitudinal modulus of elasticity;

Fi j ,Fi j* 5 fraction of modal strain energy concentrated in
Elementj for Mode i;

f i 5 natural frequency of vibration for Modei ~Hz!;
i 5 index of natural frequency of vibration, mode;
j 5 index of element within bridge/structure;

Zj 5 standard normal damage indicator value for ele-
ment j;

b i j 5 damage indicator value for Modei, Elementj;
mb j 5 mean ofb j values for allj elements;
sb j 5 standard deviation ofb j values for allj elements;

and
f i j 5 mode shape coordinate for Modei, Elementj.
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