

Digital Commons @ George Fox University

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

Department of Biomedical, Mechanical, and Civil Engineering

2000

Governing Yield Modes for Common Bolted and Nailed Wood Connections

Brian J. Tucker Washington State University

David Pollock George Fox University, dpollock@georgefox.edu

Kenneth J. Fridley University of Nevada, Las Vegas

Jeffrey J. Peters Washington State University

Follow this and additional works at: https://digitalcommons.georgefox.edu/mece_fac

Part of the Civil Engineering Commons, Structural Engineering Commons, and the Structural Materials Commons

Recommended Citation

Tucker, Brian J.; Pollock, David; Fridley, Kenneth J.; and Peters, Jeffrey J., "Governing Yield Modes for Common Bolted and Nailed Wood Connections" (2000). *Faculty Publications - Biomedical, Mechanical, and Civil Engineering*. 38.

https://digitalcommons.georgefox.edu/mece_fac/38

This Article is brought to you for free and open access by the Department of Biomedical, Mechanical, and Civil Engineering at Digital Commons @ George Fox University. It has been accepted for inclusion in Faculty Publications - Biomedical, Mechanical, and Civil Engineering by an authorized administrator of Digital Commons @ George Fox University. For more information, please contact arolfe@georgefox.edu.

GOVERNING YIELD MODES FOR COMMON BOLTED AND NAILED WOOD CONNECTIONS

By Brian J. Tucker,¹ Student Member, ASCE, David G. Pollock,² Member, ASCE, Kenneth J. Fridley,³ Member, ASCE, and Jeffery J. Peters⁴

ABSTRACT: Connections in wood structures are important when designing for ductility. The 1997 Uniform Building Code has taken this into consideration when designating wind and earthquake load duration factors for connections. Factors of 1.6 or 1.33 may be applied to the connection strength, depending on the type of yield mode exhibited by the connection, which may be determined from the yield limit equations supplied in the *National Design Specification for Wood Construction* (NDS). The NDS provides the designer with multiple tables containing capacities for various common connections. Unfortunately, yield modes are not published along with tabulated capacities. Therefore, the designer must carry out potentially cumbersome calculations using the NDS yield limit equations simply to determine the governing yield mode before an appropriate Uniform Building Code load duration factor can be applied. In this paper, several NDS tables are extended to include capacity *and* yield mode, smaller side member thickness configurations are added to the existing nail/spike tables, and a useful toe-nail table is provided. The overall purpose of these tables is to accelerate the design process by eliminating time-consuming calculations.

INTRODUCTION

Due to the need for ductile performance of a structure, connections may be one of the most important engineered aspects of light-frame wood construction. Connection ductility is essential for maintaining structural integrity during dynamic loading events such as wind and earthquakes.

Capacity of a given connection may be obtained from yield limit equations, which are presented in the National Design Specification for Wood Construction (NDS) ("ANSI/AF&PA" 1997). Yield mode equations for the capacity of bolted connections and nail/spike connections are included in NDS chapters 8 and 12, respectively. Bolted connection equations are separated into two categories: single shear and double shear. One set of equations is required for nail/spike connections since they are typically only used in single shear configurations. The nominal design value of the connection, Z, is determined by taking the least value calculated from the appropriate set of yield mode equations. The mode corresponding to the least value is referred to as the yield mode of the connection (for example, I_m, I_s, II, III_m, III_s, IV). The various yield modes are illustrated in Appendix I of the NDS and duplicated here in Fig. 1. Yield modes I_m and I_s are the result of wood fibers crushing in the main and side members, respectively. Yield mode II is the result of wood fiber crushing in both members, which allows the fastener to rotate. This is often due to oversized bolt holes. Mode II is not applicable to bolted double shear or nail/spike connections. Yield modes III_m and III_s are the result of fastener yielding, wherein a plastic hinge is formed at the shear plane, along with wood fiber crushing primarily in the main member or side member, respectively. Mode IV is also a result of fastener yielding, in which multiple plastic hinges are formed.

The strength of wood connections depends not only on material properties (such as wood bearing strength and fastener bending yield strength) and connection geometry (such as member dimensions and fastener diameter), but also on the duration of the load applied to the connection. Wood has the property of exhibiting greater strength for shorter duration loads than for longer, sustained loads. The NDS addresses this time-dependent behavior of wood by applying a load duration factor, C_D , to the capacity of the connection. For load combinations, including short-duration loads such as wind or earthquake, the NDS prescribes a load duration factor of 1.6 to be applied to the capacity of all connections. However, the Uniform Building Code (UBC) (1997) prescribes load duration factors that differ slightly from the NDS with regard to these loading conditions. The UBC permits a load duration factor of 1.6 to be used for connections exhibiting yield modes III_m, IIIs, or IV when the loading is due to wind or earthquake. A lower load duration factor of 1.33 must be used when yield modes I_m, I_s, or II are exhibited. The primary reason for this discrepancy is the difference in the amount of cyclic test data available for each yield mode. Recent laboratory tests of modes III and IV connections have revealed sufficient ductility under cyclic loading (Dolan et al. 1995, 1996). This is the result of inelastic fastener deformation and yielding, which lead to energy dissipation in the connection. The lack of data for modes I and II under cyclic loading conditions has led to concerns about the ductility of these connections and about the UBC-imposed limitation on the load duration factor.

The NDS contains several bolt and nail/spike connection design tables with yield capacities for multiple configurations. Unfortunately, these tables do not indicate the governing yield mode. A designer could use the NDS yield limit equations to determine the mode of connection yield or, more conservatively, always use a load duration factor of 1.33 when designing to resist wind or seismic loads, according to the UBC. However, from an economic standpoint, there is a need to know which yield mode governs the connection behavior.

In addition to yield modes, the NDS tables of connection design values do not address some common connection configurations. For example, the tables for nail/spike connection values in chapter 12 of the NDS do not address side member thickness values below 12.7 mm (0.5 in.). These connection capacities and yield modes would be useful for shear wall and diaphragm design where thin sheathing is used. Toe-nail connections are commonly used in light-frame construction; however, design tables for these connections are not included in

¹Grad. Res. Asst., Dept. of Civ. and Envir. Engrg., Washington State Univ., Pullman, WA 99164-2910.

²Asst. Prof., Dept. of Civ. and Envir. Engrg., Washington State Univ., Pullman, WA.

³Prof., Dept. of Civ. and Envir. Engrg., Washington State Univ., Pullman, WA.

⁴Grad. Res. Asst., Dept. of Civ. and Envir. Engrg., Washington State Univ., Pullman, WA.

Single Shear Connections Double Shear Connections Mode I_m Mode I_s Mode I_s Mode II (not applicable) Mode III_m (not applicable) Mode III_s Mode III_s

FIG. 1. Connection Yield Modes (Adapted from American Forest and Paper Association 1997)

the NDS. This paper addresses these limitations in the NDS connection tables.

SCOPE

The purpose of this paper is to evaluate governing yield modes for bolted and nailed connections commonly used in wood construction. NDS tables are extended, providing both the capacity *and* the governing yield mode. Additional nailed connection values and yield modes are tabulated for smaller side member thicknesses. Tables are also created presenting the design strength for toe-nailed connections as a useful addition to the existing NDS design tables.

DESIGN TABLES AND EXAMPLES

Tables provided herein present a limited number of species and member sizes. A more comprehensive set of tables is available from the authors.

Bolted Connections

Various governing yield modes are applicable throughout the NDS bolted connection design tables and are not necessarily intuitive. This state of affairs presents a need for bolted connection yield mode tables for efficient structural design. Otherwise, to accurately use the UBC load duration factors, a designer must calculate the yield mode using the NDS bolted connection equations simply to determine the mode. The NDS yield mode equations are provided in the appendix to this paper.

Not all yield modes are applicable in all bolted connection configurations. For example, modes II and III_m do not pertain to double shear bolted connections. In addition, mode I_s does not pertain to bolted connections with steel side plates. The applicable modes for different bolted connection configurations are summarized in Table 1. Slightly over 50% of the

TABLE 1. Percentages of Applicable Yield Modes for NDS Bolted Connection Tables

	Single	Shear	Double	Shear
Yield mode (1)	Wood-to- wood (2)	Wood-to- metal (3)	Wood-to- wood (4)	Wood-to- metal (5)
Im	0	0	27.14	51.62
I_s	17.6		16.8	—
II	42.81	55	_	
III_m	1.79	0		
IIIs	28.01	45	42.24	48.38
IV	9.8	0	13.81	0

bolted connection configurations in the NDS tables exhibit yield modes of either I_m , I_s , or II. Therefore, a slight majority of the connections are considered by the UBC to be "non-ductile," requiring a designer to use the lesser load duration factor of 1.33. The percentages of each applicable yield mode in the NDS bolt tables are summarized in Table 1. Tables 2–7 provide tabulated design values and modes for various bolted connection configurations.

Bolted connection tables were created for some common connection configurations, including single and double shear connections with wood and steel side members. As an example of table usage, consider the following connection configuration, illustrated in Fig. 2:

- Double shear connection
- Load applied parallel to main member and perpendicular to side members
- All members are spruce-pine-fir
- 38.1 mm (1-1/2 in.) side member thickness
- 88.9 mm (3-1/2 in.) main member thickness
- 15.9 mm (5/8 in.) diameter ASTM A307 bolt
- Seismic loading conditions

TABLE 2. Bolt Design Values (Z) and Yield Modes for Single Shear (Two Member) Connections for Sawn Lumber with Both Members of Identical Species

Thic	kness		· · · · ·														•	
Main Member	Side Member	Bolt Diameter				G=(Southe		;					Γ	G≓()ouglas-		ch		
tm	ts	D	Z	Yield	Z s⊥	Yield	Zm⊥	Yield	Ζı	Yield	Z	Yield	Z s⊥	Yield	Zmi	Yield	Z ⊥	Yield
in.	in.	in.	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode
		1/2	530	II	330	II	330	П	250	П	480	II	300	П	300	11	220	II
		5/8	660	п	400	n	400	п	280	II	600	I	360	II	360	11	240	II
1-1/2	1-1/2	3/4	800	ÍÍ	460	П	460	II	310	II	720	П	420	II	420	II	270	п
		7/8	930	n	520	. II	520	II	330	11	850	II .	470	i i II	470	II .	290	H
		1	1060	Ĩ	580	Î Î	580	II	350	Î	970	II	530	II	530	II	310	II
· · ·		1/2	660	Ills	400	IIIs	420	п	350	Ц	610	IIIs	370	IIIs	370	II	310	n
		5/8	930	II	560	IIIs	490	П	390	II	850	II	520	IIIs	430	II	340	П
2-1/2	1-1/2	3/4	1120	U	660	Is	560	S II	430	u	1020	n	590	Īs	500	II	380	II
		7/8	1300	II	720	Is	620	II	470	II	1190	II	630	Is	550	II	410	II
		1	1490	I	770	Is	680	$\mathbf{n} \in \mathbf{n}$	490	II	1360	n I	680	ls	610	Ш.	440	П
		1/2	660	IIIs	400	IIIs	470	IIIs	360	IIIs	610	IIIs	370	IIIs	420	П	330	Ills
		5/8	940	IIIs	560	IIIs	550	п	460	II	- 880	IIIs	520	Ills	480	П	400	н
3	1-1/2	3/4	1270	IIIs	660	Is	620	п	500	п	1190	II	590	Is	550	II	440	п
		7/8	1520	I	720	Is	690	IJ	540	n	1390	I	630	Is	610	п	480	П
		1	1740	Î	770	Is	750	II	580	II	1590	I	680	Is	670	U	510	II
	1	1/2	660	IIIs	400	Ills	470	IIIs	360	IIIs	610	Ills	370	IIIs	430	IIIs	330	Ills
		5/8	940	IIIs	560	IIIs	620	П	500	IIIs	880	Ills	520	IIIs	540	11	460	II
	1-1/2	3/4	1270	IIIs	660	Is	690	1	580	IJ	1200	IIIs	590	Is	610	II	510	I
		7/8	1680	IIIs	720	Is	770	II	630	П	1590	IIIs	630	Is	680	II	550	П
3-1/2		C 1	2010	<u> </u>	770	Is	830	П	670	11	1830	п	680	Is	740	I	590	П
5-172		1/2	750	ĪV	520	ĪV	520	IV	460	IV	720	IV	490	īV	490	IV	430	١V
		5/8	1170	IV	780	IV	780	IV	650	IJ	1120	IV	700	ПIs	700	IIIm	560	II
	3-1/2	3/4	1690	IV	960	IIIs	960	IIIm	710	П	1610	IV	870	Ills	870	IIIm	630	II
		7/8	2170	II	1160	IIIs	1160	Illm	780	11	1970	Π	1060	IIIs	1060	IIIm	680	п
		1	2480	II	1360	II	1360	Î	820	II	2260	II	1230	II	1230	II	720	u

TABLE 3. Bolt Design Values (Z) and Yield Modes for Single Shear (Two Member) Connections for Sawn Lumber with Both Members of Identical Species

Thic	kness																	
Main Member	Side Member	Bolt Diameter				G=0 Hem								G=(Spruce-		r		
tm	ts	D	Z _{II}	Yield	Z s⊥	Yield	Zm⊥	Yield	Z	Yield	Z	Yield	$Z_{s\perp}$	Yield	Z m⊥	Yield	Z _	Yield
in.	in.	in.	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode
		1/2	410	II	250	II	250	II	180	II	410	II	240	II	240	II	170	ÎI
		5/8	520	II.	300	I	300	I	190	II	510	I	290	Π	290	П	190	H
1-1/2	1-1/2	3/4	620	II	350	II	350	I	210	II	610	II	340	II	340	Î	210	Ī
		7/8	720	n	390	II	390	II	230	I	710	II	380	1	380	I	220	П
		1	830	II	440	II	440	Π	250	II	810	II	430	П	430	п	240	II
		1/2	550	Ills	320	IIIs	310	I	250	I	540	Ills	320	IIIs	300	II	240	II
	1	5/8	730	II	420	Is	360	II	270	II	710	II	410	Is	350	п	270	11
2-1/2	1-1/2	3/4	870	U	460	Is	410	П	300	U	850	n	450	ls	400	I	290	п
		7/8	1020	п	500	Is	450	П	320	IÌ	1000	II	490	Is	440	II	310	II
		1	1160	II .	540	Is	500	1	350	u	1140	50.0 П	530	ls	490	II	340	п
		1/2	550	IIIs	320	Ills	350	II	290	II	540	IIIs	320	IIIs	330	II	280	II
		5/8	790	IIIs	420	Is	400	II	320	П	780	IIIs	410	Is	390	I	310	П
3	1-1/2	3/4	1020	11	460	Is	450	II	350	II	1000	ÍI	450	Ís	440	II	340	Π
		7/8	1190	П	500	Is	500	I	380	п	1160	IJ	490	Is	490	п	370	Ш
		1	1360	п	540	Is	550	n	410	II	1330	n	530	Is	540	II	400	II
		1/2	550	IIIs	320	IIIs	380	Ills	290	IIIs	540	Ills	320	IIIs	370	IIIs	280	IIIs
		5/8	790	IIIs	420	Is	440	П	370	П	780	IIIs	410	Is	430	II	360	п
	1-1/2	3/4	1100	IIIs	460	Is	500	II	400	II	1080	IIIs	450	Is	480	11	390	II
		7/8	1370	П	500	Is	550	II	430	П	1340	II	490	Is	540	IÍ	420	II
3-1/2		1	1570	II.	540	Is	600	П	470	П	1530	II	530	Is	590	II	460	II
5-172		1/2	660	IV	440	IV	440	IV	390	IV	660	IV	430	IV	430	ÍV	380	IV
		-5/8	1040	IV	600	IIIs	600	IIIm	450	II	1020	IV	590	ΠIs	590	IIIm	440	11
	3-1/2	3/4	1450	н	740	IIIs	740	IIIm	500	II	1420	II	730	IIIs	730	IIIm	480	II
		7/8	1690	II	910	II	910	II	540	n	1660	I	890	1	890	I	520	II
		1	1930	II	1030	H	1030	Π	580	II	1890	II	1000	II	1000	II	560	Π

Thic	kness												·		•••••			
Main Member	Side Member	Bolt Diameter		G=(Southe		e	D	G=(ouglas-		rch		G=0 Hen			S	G=0 Spruce-1		ir
tm	ts	D	Ζı	Yield	Ζ⊥	Yield	Z	Yield	Ζ⊥	Yield	Z	Yield	Z_{\perp}	Yield	Zl	Yield	Z_{\perp}	Yield
in.	in.	in.	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode
		1/2	570	II	310	11	530	II	270	П	470	Π	240	II	460	II	230	П
		5/8	710	I	350	II	660	. U	320	п	590	II	270	II	580	u	270	IJ
1-1/2	1/4	3/4	860	Ш	390	II	800	n	360	II	700	II	310	II	690	II	300	Π
		7/8	1000	, II	440	I	930	I	400	II	820	n	340	n	810	I	340	п
		1	1140	II	480	II	1060	П	440	II	940	II	380	П	920	II	370	П
	1	1/2	780	IIIs	440	n	750	IIIs	390	П	700	II	320	П	690	n	310	П
		5/8	1100	II	500	II	1010	II	440	II	880	II	370	П	860	II	360	II
2-1/2	1/4	3/4	1320	Π	550	Π	1210	II	490	п	1050	I	410	II	1030	П	400	П
		7/8	1540	Î	610	п	1410	Π	540	II	1230	II	450	П	1210	II	440	II
		1	1760	п	650	I	1620	I	590	П	1410	п	·490	п	1380	IJ	480	Π
	1	1/2	780	IIIs	500	IIIs	750	IIIs	450	II	710	IIIs	370	ĪI	700	Шs	360	II
		5/8	1170	Шs	580	II	1130	IIIs	510	Π	1040	5 B U 6	420	H	1020	Π	410	п
3	1/4	3/4	1560	II	640	II	1430	II	570	Π	1240	II	470	II	1220	Π	460	II
		7/8	1830	Π	700	П	1670	I	620	Π	1450	п	510	П	1420	I	500	I
		1	2090	Π	750	П	1910	Π	670	П	1660	Π	560	II	1630	II	540	П
		1/2	780	IIIs	500	IIIs	750	IIIs	470	IIIs	710	Ills	430	I	700	IIIs	410	Π
		5/8	1170	Шs	670	П	1130	Шs	580	II	1050	Шs	480	п	1040	IIIs	470	II
3-1/2	1/4	3/4	1650	IIIs	730	II	1580	Шs	650	Π	1440	U	530	II	1410	Π	520	П
		7/8	2120	II	800	П	1940	II	710	П	1680	II	570	Π	1640	II	560	Ĥ
		1 · · · 1 · · ;	2420	U	850	- 69 U zh	2210	I	760	I	1910	П	630	I	1880	II	610	Π

TABLE 5. Bolt Design Values (Z) and Yield Modes for Double Shear (Three Member) Connections for Sawn Lumber with Both Members of Identical Species

Thic	kness													
Main Member	Side Member	Bolt Diameter				0.55 ern Pine						0.50 -Fir-Larch		
t _m	ts	D	Z	Yield	Z s⊥	Yield	Zmi	Yield	Z ji	Yield	Z s⊥	Yield	Z mi	Yield
in.	in.	in.	lbs.	Mode	ībs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode
		1/2	1150	Im	800	IIIs	550	Im	1050	Im	730	IIIs	470	Im
		5/8	1440	Im	1130	IIIs	610	Im	1310	Im	1040	IIIs	530	Im
1-1/2	1-1/2	3/4	1730	Im	1330	Is	660	Im	1580	Im	1170	Is	590	Im
	1	7/8	2020	Im	1440	Is	720	Im	1840	Im	1260	ls	630	Im
		1	2310	Im	1530	Is	770	Im	2100	Im	1350	Is	680	Im
		1/2	1320	IIIs	800	Шs	910	lm	1230	IIIs	730	Ills	790	Im
		5/8	1870	IIIs	1130	Шs	1020	Im	1760	Шs	1040	Шs	880	Im
2-1/2	1-1/2	3/4	2550	IIIs	1330	Is	1110	Im	2400	Шs	1170	ls	980	Im
		7/8	3360	IIIs	1440	ls	1200	Im	3060	Im	1260	Is	1050	Im
		101 (3840	Im	1530	Is	1280	Im	3500	Im	1350	Is	1130	Im
		1/2	1320	IIIs	800	Ills	940	IIIs	1230	IIIs	730	IIIs	860	IIIs
		5/8	1870	IIIs	1130	IIIs	1220	lm	1760	IIIs	1040	Шs	1050	Im
3	1-1/2	3/4	2550	IIIs	1330	Is	1330	Im	2400	IIIs	1170	Is	1170	Im
		· 7/8 :	3360	IIIs	1440	Is	1440	Im	3180	IIIs	1260	Is	1260	Im
		1	4310	IIIs	1530	Is	1530	Im	4090	IIIs	1350	Is	1350	Im
		1/2	1320	IIIs	800	IIIs	940	IIIs	1230	IIIs	730	IIIs	860	IIIs
		5/8	1870	IIIs	1130	IIIs	1290	IIIs	1760	IIIs	1040	Шs	1190	IIIs
	1-1/2	3/4	2550	IIIs	1330	ls	1550	lm	2400	Ills	1170	Is	1370	Im
		7/8	3360	IIIs	1440	Is	1680	Im	3180	IIIs	1260	Is	1470	Im
3-1/2	1	1	4310	IIIs	1530	Is	1790	Im	4090	IIIs	1350	Is	1580	Im
5-1/2		1/2	1500	IV	1040	IV	1040	ĪV	1430	IV	970	IV	970	IV
		5/8	2340	IV	1560	IV	1420	Im	2240	IV	1410	IIIs	1230	Im
	3-1/2	3/4	3380	IV	1910	IIIs	1550	Im	3220	IV	1750	IIIs	1370	Im
		7/8	4600	IV	2330	IIIs	1680	Im	4290	Im	2130	IIIs	1470	Im
		1	5380	Im	2780	IIIs	1790	Im	4900	Im	2580	Шs	1580	Im

Thic	kness													
Main Member	Side Member	Bolt Diameter			-	0.43 n-Fir						0.42 Pine-Fir		
tm	ts	D	Z	Yield	Z s⊥	Yield	ZmL	Yield		Yield	Z s⊥	Yield	Z _{m⊥}	Yield
in.	in.	in.	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode
<u></u>		1/2	900	Im	650	IIIs	380	lm	880	Im	640	IIIs	370	Im
		5/8	1130	Im	840	Is	420	Im	1100	Im	830	Is	410	Im
1-1/2	1-1/2	3/4	1350	Im	920	Is	460	Im	1320	Im	900	Is	450	Im
		7/8	1580	lm	1000	Is	500	Im	1540	Im	970	Is	490	Im
		1	1800	Im	1080	Is	540	Im	1760	Im	1050	Is	530	Im
		1/2	1100	IIIs	650	IIIs	640	Im	1080	IIIs	640	IIIs	610	Im
		5/8	1590	IIIs	840	Is	700	Im	1570	IIIs	830	Is	690	Im
2-1/2	1-1/2	3/4	2190	IIIs	920	ls	770	lm	2160	IIIs	900	Is	750	Im
		7/8	2630	Im	1000	Is	830	Im	2570	Im	970	Is	810	Im
		8 . 1 00	3000	Im	1080	Is	900	lm	2940	Im	1050	Is	880	lm
		1/2	1100	IIIs	650	IIIs	760	Шs	1080	IIIs	640	IIIs	740	Im
		5/8	1590	IIIs	840	ls	840	Im	1570	IIIs	830	Is	830	Im
3	1-1/2	3/4	2190	Шs	920	Ĭs	920	Im	2160	IIIs	900	Is	900	Im
	1	7/8	2920	IIIs	1000	ls	1000	lm	2880	IIIs	970	Is	970	Im
		1	3600	Im	1080	Is	1080	Im	3530	Im	1050	Is	1050	Im
		1/2	1100	Шs	650	IIIs	760	IIIs	1080	IIIs	640	IIIs	740	Ills
		5/8	1590	IIIs	840	Is	980	Im	1570	IIIs	830	Is	960	Im
	1-1/2	3/4	2190	IIIs	920	ls	1080	Im	2160	IIIs	900	ls	1050	Im
	1	7/8	2920	IIIs	1000	Is	1160	Im	2880	IIIs	970	Is	1130	Im
3-1/2		1	3600	Īs	1080	Is	1260	Im	3530	Is	1050	Is	1230	lm
2.12		1/2	1330	IV	880	IV	880	IV	1310	IV	870	IV	860	Im
		5/8	2070	IV	1190	IIIs	980	Im	2050	IV	1170	IIIs	960	Im
	3-1/2	3/4	2980	IV	1490	Шs	1080	Im	2950	IV	1460	IIIs	1050	Im
		7/8	3680	Im	1840	IIIs	1160	lm	3600	Im	1810	IIIs	1130	Im
		1	4200	Im	2280	IIIs	1260	Im	4110	Im	2240	IIIs	1230	Im

 TABLE 7. Bolt Design Values (Z) and Yield Modes for Double Shear (Three Member) Connections for Sawn Lumber with 1/4" ASTM A36 Steel Side Plate

Thic	kness													1				
Main Member	Side Member	Bolt Diameter		G=(Southe		e	D	G=(ouglas-		rch		G=0 Hem			5	G=0 Spruce-1		ïr
tm	ts	D	Z	Yield	\mathbf{Z}_{\perp}	Yield	Z	Yield	Ζ⊥	Yield	Z	Yield	Ζ⊥	Yield	Zi	Yield	Z ⊥	Yield
in.	in.	in.	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode
		1/2	1150	Im	550	Im	1050	Im	470	Im	900	Im	380	Im	880	Im	370	Im
		5/8	1440	Im	610	Im	1310	lm	530	lm	1130	Im	420	Im	1100	Im	410	Im
1-1/2	1/4	3/4	1730	Im	660	Im	1580	Im	590	Im	1350	Im	460	Im	1320	Im	450	Im
		7/8	2020	Im	720	Im	1840	Im	630	lm	1580	Im	500	Im	1540	Im	490	Im
		1	2310	Im	770	Im	2100	Im	680	Im	1800	lm	540	Im	1760	Im	530	Im
		1/2	1570	IIIs	910	Im	1510	IIIs	790	Im	1410	IIIs	640	lm	1400	IIIs	610	Im
		5/8	2350	IIIs	1020	Im	2190	Im	880	Im	1880	Im	700	Im	1840	Im	690	Im
2-1/2	1/4	3/4	2880	Im	1110	Im	2630	Im	980	Im	2250	Im	770	Im	2200	Im	750	Im
		7/8	3360	Im	1200	Im	3060	Im	1050	Im	2630	Im	830	Im	2570	Im	810	Im
		1	3840	Im	1280	lm	3500	lm	1130	Im	3000	lm	900	Im	2940	Im	880	Im
		1/2	1570	Ills	1000	IIIs	1510	IIIs	940	Шs	1410	IIIs	770	Im	1400	Ills	740	Im
-		5/8	2350	IIIs	1220	Im	2250	IIIs	1050		2110	IIIs	840	Im	2090	IIIs	830	Im
3	1/4	3/4	3300	IIIs	1330	Im	3150	Im	1170	Im	2700	Im	920	Im	2640	Im	900	Im
		7/8	4040	İm	1440	Im	3680	Im	1260	198 7 E . J	3150	Im	1000	10.817777 H.	3080	Im	970	Im
		1	4610	Im	1530	Im	4200	Im	1350		3600		1080		3530	lm	1050	Im
		1/2	1570	. 1996 N.	1000		1510		940	Шs	1410		860	IIIs	1400	IIIs	840	Шs
		5/8	2350	IIIs	1420		2250	IIIs	1230		2110		98 0	Im	2090	IIIs	960	Im
3-1/2	1/4	3/4	3300	IIIs	1550		3170	IIIs	1370	Sec. 6 1994 44	2960		1080		2940	Шs	1050	Im
		7/8	4440	IIIs	1680		4260	IIIs	1470		3680		1160		3600	Im	1130	Im
		1	5380	Im	1790	Im	4900	Im	1580	Im	4200	Im	1260	Im	4110	Im	1230	Im

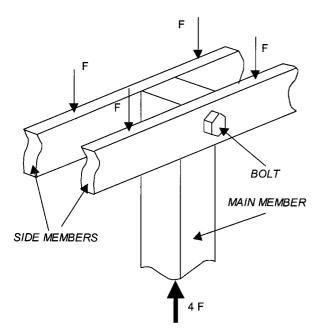


FIG. 2. Bolted Double Shear Connection

Using Table 6, entitled "Bolt Design Values (Z) and Yield Modes for Double Shear (Three Member) Connections," for sawn lumber with both members of identical species, the connection yield capacity, $Z_{s\perp}$, and yield mode are found to be 3.69 kN (830 lb) and I_s, respectively. According to the UBC, for a mode I_s connection, a load duration factor, C_D , of 1.33 may be used to obtain the tabulated connection capacity for seismic loading. The factored design capacity, Z', is the resulting product, as follows:

$$Z' = Z_{s\perp}C_D = (3.69)(1.33) = 4.91 \text{ kN}$$

 $[Z' = Z_{s\perp}C_D = (830)(1.33) = 1,104 \text{ lb}]$

For comparison of UBC and NDS design procedures, the allowable connection capacity for seismic loading, according to the NDS, is as follows:

$$Z' = Z_{s\perp}C_D = (3.69)(1.6) = 5.90 \text{ kN}$$

 $[Z' = Z_{s\perp}C_D = (830)(1.6) = 1,328 \text{ lb}]$

If a 12.7 mm (1/2 in.) diameter ASTM A307 bolt is used instead of the 15.9 mm (5/8 in.) diameter bolt, a connection yield capacity and yield mode of 2.85 kN (640 lb) and III_s, respectively, are obtained again from Table 6. For this yield mode, the 1.6 load duration factor may be applied to the design capacity of the connection for both UBC and NDS design procedures. The result is as follows:

$$Z' = Z_{s\perp}C_D = (285)(1.6) = 4.55 \text{ kN}$$
$$[Z' = Z_{s\perp}C_D = (640)(1.6) = 1,024 \text{ lb}]$$

This demonstrates that a smaller bolt diameter does not necessarily result in a significantly lower design capacity due to the UBC use of the 1.33 load duration factor, instead of the 1.6 factor, for "nonductile" connections.

Nailed Connections

Tables 8–10 were created with yield capacities and yield modes for common wire nails, box nails, and threaded hardened-steel nails for connections with both members of the same species. The existing NDS nail/spike tables were expanded to include smaller side member thickness configurations. All NDS tabulated nail/spike configurations with metal side plates exhibit mode III yielding; therefore, they were not replicated here. For weak species with small side member thicknesses, yield mode I_s was more prominent when compared with larger side member thickness configurations. For example, common wire nail connections consisting of spruce-pine-fir members with a 7.94 mm (5/16 in.) side member thickness primarily exhibit mode I_s yielding, as presented in Table 9. This pattern is very obvious for common wire spike connections; and this information may be valuable for shear wall design. For example, consider the shear wall connection illustrated in Fig. 3.

- 10d common nail
- 7.94 mm (5/16 in.) plywood
- 51 mm by 102 mm (2 by 4) stud
- Both members are spruce-pine-fir (to demonstrate changes in yield mode)

For wall diaphragm design, the diaphragm factor ($C_{di} = 1.1$) may be used. By referring to Table 9, entitled "Common Wire Nail Design Values (Z) for Single Shear (two member) Connections," the design capacity and yield mode for the connection are 311 N (70 lb) and I_s, respectively. The allowable connection capacity can then be calculated according to the UBC as follows:

$$Z' = ZC_D C_{di} = (311)(1.33)(1.1) = 455 \text{ N}$$

 $[Z' = ZC_D C_{di} = (70)(1.33)(1.1) = 102.4 \text{ lb}]$

If a thicker side member is used, such as 9.53 mm (3/8 in.) plywood, the design capacity and yield mode are 316 N (71 lb) and III_s, respectively. The allowable design capacity is then calculated as follows:

$$Z' = ZC_D C_{di} = (316)(1.6)(1.1) = 556 \text{ N}$$
$$[Z' = ZC_D C_{di} = (71)(1.6)(1.1) = 123.2 \text{ lb}]$$

By using a thicker side member, yielding of the connection is governed by mode III_s instead of mode I_s , which allows the higher load duration factor of 1.6 to be used, according to UBC design procedures.

Toe-Nailed Connections

Toe-nail connection values are not dependent upon actual side member thickness, but instead on the fastener length in each member. For the toe-nail design table, the toe-nail factor, C_m , of 0.83 was applied to the nominal design capacity, as well as the penetration depth factor C_d . All toe-nailed connections presented in Table 11 exhibit a yield mode of III_s or IV. Therefore, a load duration factor of 1.6 may be applied, using either NDS or UBC design procedures. Consider a wall stud (side member) to bottom plate (main member) toe-nail connection, as illustrated in Fig. 4 with an additional nail inserted on the opposite side of the wall stud:

- Wall stud to bottom plate connection
- All members are southern pine
- Two 10d common nails

The nominal design capacity, Z^* , and yield mode are found in Table 11 to be 427 N (96 lb) and IV, respectively. Nominal design capacity is the result of the connection capacity multiplied by the toe-nail factor and the penetration depth factor, as follows:

Side	Nail	Nail	Penny	G=	0.55	G=	0.50	G=	0.43	G=	0.42
Member	Length	Diameter	Weight		ern Pine	1	Fir-Larch		n-Fir		-Pine-Fir
Thickness				South						oprace	
ts	L	D		Z	Yield	Z	Yield	Z	Yield	Z	Yield
inches	inches	inches		lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode
	2	0.099	6d	46	IIIs	41	IIIs	35	IIIs	34	IIIs
	2.5	0.113	8d	58	IIIs	52	IIIs	45	IIIs	44	IIIs
	3	0.128	10d	73	IIIs	66	IIIs	57	IIIs	56	IIIs
5/16	3.25	0.128	12d	73	IIIs	66	IIIs	57	IIIs	56	IIIs
	3.5	0.135	16d	81	IIIs	73	IIIs	63	IIIs	62	IIIs
	4	0.148	20d	92	IIIs	83	IIIs	72	IIIs		Is .
	4.5	0.148	30d	92	IIIs	83	IIIs	72	IIIs	70	Is
	5	0.162	40d	109	Ills	100	IIIs	81	Is	77	Is
	2	0.099	6d	48	IIIs	43	IIIs	36	IIIs	35	IIIs
	2.5	0.113	8d	60	llIs	54	IIIs	46	IIIs	45	IIIs
	3	0.128	10d	75	IIIs	68	IIIs	58	IIIs	56	IIIs
3/8	3.25	0.128	12d	75	IIIs	68	Ills	58	IIIs	1999 (1997) - T	IIIs
	3.5	0.135	16d	83	IIIs	75	IIIs	64	IIIs	62	IIIs
	4	0.148	20d	94	IIIs	85	IIIs	73	Ills	71	IIIs
	4.5	0.148	30d	94	IIIs	85	IIIs	73	IIIs	71	IIIs
	5	0.162	40d	111	IIIs	101	IIIs	87	Ills	85	Ills
	2	0.099	6d	55	IIIs	48	IIIs	39	IIIs	38	IIIs
	2.5	0.113	8d	67	IIIs		ALLO	49	IIIs	47	IIIs
	3	0.128	10d	82	IIIs	73	IIIs	61	IIIs	59	IIIs
1/2	3.25	0.128	12d	82	IIIs	73	Ills	61	IIIs	59	IIIs
	3.5	0.135	16d	89	IIIs	79	IIIs	66	IIIs	65	IIIs
	4	0.148	20d	101	Ills	90	Ills	75	Шs	73	IIIs
	4.5	0.148	30d	101	IIIs	90	IIIs	75	IIIs	73	IIIs
	5	0.162	40d	117	IIIs	105	IIIs	89	IIIs	87	IIIs
	2	0.099	6d	61	IV	55	IIIs	44	IIIs	42	IIIs
	2.5	0.113	8d	76	IIIs	66	IIIs	53	llls	52	IIIs
	3 3.25	0.128 0.128	10d 12d	91 91	IIIs III-	79	IIIs	65	IIIs	63	IIIs
5/8	3.25	0.128	12d 16d	91	IIIs	79	IIIs	65 71	IIIs	63	IIIs IIIs
	3.3 4	0.133	20d	110	IIIs IIIs	86 97	IIIs IIIs	71 80	IIIs IIIs	69 77	IIIs IIIs
	4.5	0.148	30d	110	IIIs	97	IIIs	80	IIIs	77	IIIs
	5	0.148	40d	126	IIIs	112	IIIs	93	IIIs	90	Шs
	2	0.102	6d	61	IV	55	IIIS IV	95 48	IIIs	90 47	IIIs
	2.5	0.033	8d	79	IV	72	IV	58	IIIs	57	IIIs
	3	0.113	10d	101	IIIs	87	IIIs	70	IIIs	68	IIIs
	3.25	0.128	12d	101	IIIs	1		70	IIIs	68	
3/4	3.5	0.125	16d	101	IIIs	94	IIIs IIIs	76	IIIs	74	IIIs
	4	0.133	20d	121	े IIIs	105	IIIs	85	IIIs	83	IIIs
	4.5	0.148	30d	121	IIIs	105	IIIS IIIS	85	IIIs	83	IIIs
	5	0.143	40d	138	IIIs	121	Ills	99	IIIs	96	IIIs
	3.25	0.102	12d	101	IV	93	IIIS	80	INS	79	IV IV
	3.5	0.123	16d	113	IV	103	IV	89	IV	88	IV
		0.148	20d	128	IV	118	IV	102	IV	100	IV IV
1-1/2	1 4										
1-1/2	4 4.5	0.148	30d	128	IV	118	IV	102	IV	100	IV

TABLE 8. Box Nail Design Values (Z) and Yield Modes for Single Shear (Two Member) Connections with Both Members of Identical Species

Side Member	Nail Length	Nail Diameter	Penny Weight		0.55 ern Pine		0.50 Fir-Larch		0.43 n-Fir		0.42 Pine-Fir
Thickness	L	D		Z	Yield	Z	Yield	z	Yield	Z	Yield
t _s inches	inches	inches		lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode
inches	2	0.113	6d	58	Ills	52	IIIs	45	Ills	44	IIIs
	2.5	0.113	8d	76	Ills	69	IIIs	60	Ills	58	IIIs
	3	0.131	10d	70 92	IIIs	83	IIIs	72	IIIs	70	Is
	3.25	0.148	10d 12d	92	IIIs	83	IIIs	72	IIIs	70	Is
	3.5	0.143	12d 16d	109	IIIs	100	IIIs	81	Is	70	Is
5/16	4	0.102	20d	131	IIIs	115	IIIS	87	IS	83	IS
	4.5	0.192	20d 30d	140	Is	117	Is	88	Is	85	Is
	5	0.207	40d	140	IS IS	117	ls	89	Is	86	Is
	5.5	0.244	50d	144	ls	121	Is	91	Is	87	Is
	6	0.263	60d	152	ls	127	Is	96	Is	92	Is
	2	0.113	6d	60	IIIs	54	IIIs	46	IIIs	45	Ills
	2.5	0.131	8d		IIIs	71	Ills	60	IIIs	59	IIIs
	3	0.148	10d	94	IIIs	85	Ills	73	IIIs	71	IIIs
	3.25	0.148	12d	94	IIIs	85 - 85			IIIs	71	
	3.5	0.162	16d	111	IIIs	101	IIIs	87	IIIs	85	IIIs
3/8	4	0.192	20d	132	IIIs	120	IIIs	104	IIIs	100	Is
	4.5	0.207	30d	144	IIIs	131	IIIs	106	Is	101	Is
	5	0.225	40d	158	IIIs	143	ls	107	Is	103	Is .
	5.5	0.244	50d	163	IIIs	145	Is	109	Is	104	Is
	6	0.263	60d	182	Is	153	Is	115	Is	110	Is
	2	0.113	6d	67	IIIs	59	IIIs	49	IIIs	47	Ills
	2.5	0.131	8d	85	IIIs	76	IIIs	63	IIIs	61	IIIs
	3	0.148	10d	101	IIIs	90	IIIs	75	IIIs	73	IIIs
	3.25	0.148	12d	101		90	IIIs	75	IIIs	73	IIIs
	3.5	0.162	16d	117	IIIs	105	IIIs	89	IIIs	87	IIIs
1/2	4	0.192	20d	137	IIIs	124	IIIs	105	IIIs	103	IIIs
	4.5	0.207	30d	148	Ills	134	IIIs	115	IIIs	112	IIIs
	5	0.225	40d	162	Ills	147	IIIs	126	Ills	123	IIIs
	5.5	0.244	50d	166	IIIs	151	IIIs	130	IIIs	127	IIIs
	6	0.263	60d	188	Ills	171	IIIs	147	Ills	144	IIIs
	2	0.113	6d	76	IIIs	66	IIIs	53	Ills	52	IIIs
	2.5	0.131	8d	94	IIIs	82	Шs	67	llls	65	IIIs
	3	0.148	10d	110	IIIs	97	IIIs	80	IIIs	77	IIIs
	3.25	0.148	12d	110	IIIs	97	IIIs	80	IIIs	77	IIIs
5/8	3.5	0.162	16d	126	Ills	112	IIIs	93	IIIs	90	IIIs
5/0	4	0.192	20d	146	Ills	130	IIIs	109	IIIs	106	IIIs
	4.5	0.207	30d	156	IIIs	140	IIIs	118	IIIs	115	IIIs
	5	0.225	40d	169	IIIs	151	Ills	128	IIIs	125	IIIs
	5.5	0.244	50d	173	IIIs	155	IIIs	132	IIIs	129	IIIs
	6	0.263	60d	194	llIs	175	IIIs	149	IIIs	145	IIIs
	2.5	0.131	8d	104	IIIs	90	IIIs	73	IIIs	70	IIIs
	3	0.148	10d	121	IIIs	105	IIIs	85	IIIs	83	IIIs
	3.25	0.148	12d	121	IIIs	105	IIIs	85	IIIs	83	IIIs
	3.5	0.162	16d	138	IIIs	121	IIIs	99	IIIs	96	IIIs
3/4	4	0.192	20d	157	IIIs	138	IIIs	114	IIIs	111	IIIs
	4.5	0.207	30d	166	IIIs	147	IIIs	122	IIIs	.119	IIIs
	5	0.225	40d	178	IIIs	158	IIIs	132	IIIs	129	IIIs
	5.5	0.244	50d	182	IIIs	162	IIIs	136	IIIs	132	IIIs
	6	0.263	60d	203	Ills	181	IIIs	152	IIIs	149	IIIs
	3.5	0.162	16d	154	IV	141	IV	122	IV	120	IV
	4	0.192	20d	185	IV	170	IV	147	IV	144	IV
1-1/2	4.5	0.207	30d	203	IV	186	IV	161	rv	158	IV
	5	0.225	40d	224	IV	205	IV	178	IV	172	IIIs
	5.5	0.244	50d	230	IV	211	IV	181	IIIs	175	IIIs
	6	0.263	60d	262	ÍV	240	IV	197	IIIs	191	IIIs

TABLE 9. Common Wire Nail Design Values (Z) and Yield Modes for Single Shear (Two Member) Connections with Both Members of Identical Species

Side Member	Nail Length	Nail Diameter	Penny Weight	_	=0.55 ern Pine		G=0.50 as-Fir-Larch	1	G=0.43 Iem-Fir		G=0.42 ce-Pine-Fir
Thickness						-					
ts	L	D		Z	Yield	Z	Yield	Z	Yield	Z	Yield
inches	inches	inches		lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode
	2	0.12	6d	73	IIIs	66	IIIs	57	IIIs	56	IIIs
	2.5	0.12	8d	73	Ills	66	IIIs	57	Ills	56	IIIs
5/16	3	0.135	10d	91	IIIs	83	IIIs	67	Is	64	Is
	3.25	0.135	12d	N 8 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IIIs	83	IIIs	an the transition of the	Is	64	Is
	3.5	0.148	16d	103	IIIs	94	IIIs	74	Is	70	Is
	4	0.177	20d	135	Is	113	Is	85	Is	82	Is
	2	0.12	6d	74	llls	67	IIIs	57	IIIs	56	IIIs
	2.5	0.12	8d	74	Ills	67	IIIs	57	IIIs	56	Ills
3/8	3	0.135	10d	93	IIIs	84	IIIs	72	IIIs	71	fils
	3.25	0.135	12d	93	Ills	84	llls	72	IIIs	71	Ills
	3.5	0.148	16d	104	IIIs	95	IIIs	82	IIIs	80	IIIs
	4	0.177	20d	143	Ills	130	IIIs	102	Is IIIs	98 58	Is
	2	0.12	6d	80	IIIs	71	llls	60 60		58	IIIs
	2.5	0.12	8d	80	IIIs IIIs	71 88	IIIs IIIs	74	IIIs IIIs	72	IIIs IIIs
		0.135	10d	98 98			IIIs	74 74	IIIs	72	
	3.25	0.135	12d 16d	 A statistics 	IIIs IIIs	88 98	IIIs	83	IIIs	81	IIIs IIIs
1/2	3.5	0.148	20d	110 147	IIIs	133	IIIs	114	IIIs	111	llls
	4.5	0.177	30d	147	IIIs	133	IIIs	114	IIIs	111	IIIs
	4.5	0.177	40d	147	IIIs	133	IIIs	114	Ills	-111	IIIs
	5.5	0.177	50d	147	IIIs	133	IIIs	114	IIIs	111	IIIs
	6	0.177	60d	147	IIIs	133	IIIs	114	IIIs		IIIs
	2.5	0.17	8d	88	IIIs	77	IIIs	63	Ills	62	IIIs
	3	0.12	10d	106	IIIs	93	IIIs	78	Ills	75	IIIs
	3.25	0.135	10d	100	IIIs	93	IIIs	78	IIIs	75	IIIs
	3.5	0.148	16d	118	IIIs	104	IIIs	87	IIIs	85	IIIs IIIs
5/8	4	0.177	20d	154	IIIs	138	IIIs	116	IIIs	113	IIIs
0,0	4.5	0.177	30d	154	IIIs	138	IIIs	116	llls	113	IIIs
	5	0.177	40d	154	IIIs	138	IIIs	116	IIIs	113	IIIs
	5.5	0.177	50d	154	IIIs	138	IIIs	116	IIIs	113	IIIs
	6	0.177	60d	154	IIIs	138	IIIs	116	IIIs	113	IIIs
· · · ·	2.5	0.12	8d	97	Ills	84	IIIs	68	IIIs	66	IIIs
	3	0.135	10d	115	IIIs	101	IIIs	82	IIIs	80	IIIs
	3.25	0.135	12d	115	IIIs	101	IIIs	82	IIIs	80	Ills
	3.5	0.148	16d	128	IIIs	112	IIIs	92	IIIs	89	IIIs
	4	0.177	20d	164	llls	145	IIIs	121	IIIs	117	IIIs
	4.5	0.177	30d	164	IIIs	145	IIIs	121	IIIs	117	Ills
3/4	5	0.177	40d	164	IIIs	145	IIIs	121	IIIs	117	IIIs
	5.5	0.177	50d	164	IIIs	145	IIIs	121	IIIs	117	IIIs
	6	0.177	60d	164	IIIs	145	IIIs	121	Пls	117	
	7	0.207	70d	178	IIIs	159	IIIs	133	IIIs	130	
	8	0.207	80d	178	Ills	159	IIIs	133	IIIs	130	ПIs
	9	0.207	90d	178	IIIs	159		133	IIIs	130	
	3.25	0.135	12d	128	IV	118	IV	102	IV	100	IV
	3.5	0.148	16d	145	IV	133	IV	115	IV	113	IV
	4	0.177	20d	201	IV	184		160	IV	156	IV
	4.5	0.177	30d	201	IV	184		160		156	
1.1/2	5	0.177	40d	201	IV	184		160		156	
1-1/2	5.5	0.177	50d	201	IV	184		160	īV	156	
	6	0.177	60d	201	IV	184		160	IV	156	
	7	0.207	70d	227	IV	208		177	IIIs	171	
	8	0.207	80d	227	IV	208		177	IIIs	171	
	9	0.207	90d	227	IV	208		177	IIIs	171	IIIs

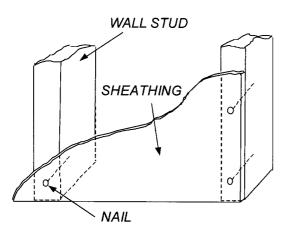


FIG. 3. Sheathing to Stud Wall Connection

 $Z^* = ZC_m C_d = (427)(0.83)(0.9) = 319$ N

 $[Z^* = ZC_mC_d = (128)(0.83)(0.9) = 96 \text{ lb}]$

Since the connection exhibits a mode IV yielding, a load duration factor of 1.6 may be multiplied by the nominal design capacity, Z^* , to obtain the allowable design capacity, Z' as follows:

$$Z' = Z^*C_D = (319)(1.6) = 510 \text{ N}$$

 $[Z' = Z^*C_D = (96)(1.6) = 154 \text{ lb}]$

Thus, for two 10d common nails, the capacity would be 1.02 kN (308 lb).

For toe-nails and slant nailing subjected to seismic loading, the Structural Engineers Association of California (SEAOC)

TABLE 11. Design Values (Z*) and Yield Modes for Laterally Loaded, Toe-Nailed Connections^{a,b} with Both Members of Identical Species

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nail	Nail	Penny	Side Member	Penetration	[0	0.50				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						G=	0.55			G=	0.43	G=	0.42
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Length	Diameter	weight	THERICSS		South	ern Pine	-		Hei	n-Fir	Spruce	-Pine-Fir
inches inches lbs. Mode lbs. Mode												-	
		_		_	Cd								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1		inches		lbs.	Mode	lbs.	Mode	lbs.	Mode	lbs.	Mode
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Box Na	il											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	0.099	6d	0.667	0.897	45	IV	41	IV	34	IIIs	33	IIIs
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.5	0.113	8d	0.833	0.982	64	IV	59	IV	51		49	IIIs
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			10d		1. 19 19 19 19 19 19 19 19 19 19 19 19 19	Sec. Sec	IV		IV		IV		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.25	0.128	12d			84	IV					65	
4.5 0.148 30d 1.500 1.000 107 IV 98 IV 85 IV 83 IV Common Wire Nail 2 0.113 6d 0.667 0.786 51 IIIs 45 IIIs 36 IIIs 35 IIIs 3 0.148 10d 1.000 0.900 96 IV 88 IV 74 IIIs 52 IIIs 3.25 0.148 12d 1.083 0.975 104 IV 95 IV 83 IV 81 IV 3.5 0.162 16d 1.167 0.959 123 IV 113 IV 111 IV 4.5 0.207 30d 1.500 0.965 162 IV 149 IV 129 IV 126 IV 5.5 0.244 50d 1.833 1.000 218 IV 146 IV 142 IV	3.5	0.135		1		94	IV		IV	74	IV	1 1 1 N	
	4	0.148			1.000		IV						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4.5	0.148	30d	1.500	1.000	107	IV	98	IV	85	IV	83	IV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Commo	on Wire N	ail										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	0.113	6d	0.667	0.786	51	IIIs	45	IIIs	36	IIIs	35	IIIs
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.5	0.131	8d	0.833	0.847	75	IV	68	IIIs	54	IIIs	52	IIIs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	0.148	10d	1.000	0.900	96	IV	88	IV	74	IIIs	72	IIIs
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.25	0.148	12d	1.083	0.975	104	IV	95	IV	83	IV	81	IV
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.5	0.162	16d	1.167	0.959	123	IV	112	IV	97	IV	95	ПIs
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	0.192	20d	1.333	0.925	142	IV	130	IV	113	IV	111	IV
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4.5	0.207	30d	1.500	0.965	162	IV	149	ĪV	129	IV	126	IV
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	0.225	40d	1.667	0.986	183	IV	168	IV	146	IV	142	IV
2 0.12 6d 0.667 0.740 56 IIIs 49 IIIs 40 IIIs 39 IIIs 2.5 0.12 8d 0.833 0.925 78 IV 69 IIIs 55 IIIs 53 IIIs 3 0.135 10d 1.000 0.986 105 IV 96 IV 77 IIIs 74 IIIs 3.25 0.135 12d 1.083 1.000 107 IV 98 IV 82 IIIs 79 IIIs 3.5 0.148 16d 1.167 1.000 121 IV 110 IV 95 IIIs 92 IIIs 4.5 0.177 20d 1.333 1.000 167 IV 153 IV 133 IV 130 IV 5 0.177 30d 1.667 1.000 167 IV 153 IV 133 IV 130 IV<		0.244	50d	1.833	1.000	191	IV	175	IV	152	IV	149	IV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	0.263	60d	2.000	1.000	218	IV	199	IV	173	IV	169	IV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Thread	ed Harde	ned-Ste	el Nail	*								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	0.12	6d	0.667	0.740	56	IIIs	49	IIIs	40	IIIs	39	IIIs
3.25 0.135 12d 1.083 1.000 107 IV 98 IV 82 IIIs 79 IIIs 3.5 0.148 16d 1.167 1.000 121 IV 110 IV 95 IIIs 92 IIIs 4 0.177 20d 1.333 1.000 167 IV 153 IV 128 IIIs 124 IIIs 4.5 0.177 30d 1.500 1.000 167 IV 153 IV 128 IIIs 124 IIIs 4.5 0.177 30d 1.667 1.000 167 IV 153 IV 133 IV 130 IV 5 0.177 40d 1.667 1.000 167 IV 153 IV 133 IV 130 IV 5.5 0.177 50d 1.833 1.000 167 IV 153 IV 133 IV 130	2.5	0.12	8d	0.833	0.925	78	IV	69	IIIs	55	IIIs	53	Ills
3.5 0.148 16d 1.167 1.000 121 IV 110 IV 95 IIIs 92 IIIs 4 0.177 20d 1.333 1.000 167 IV 153 IV 128 IIIs 124 IIIs 4.5 0.177 30d 1.500 1.000 167 IV 153 IV 128 IIIs 124 IIIs 4.5 0.177 30d 1.667 1.000 167 IV 153 IV 133 IV 130 IV 5 0.177 40d 1.667 1.000 167 IV 153 IV 133 IV 130 IV 5.5 0.177 50d 1.833 1.000 167 IV 153 IV 133 IV 130 IV 6 0.177 60d 2.000 1.000 167 IV 153 IV 133 IV 130	3	0.135	10d	1.000	0.986	105	IV	96	IV	77	IIIs	74	IIIs
4 0.177 20d 1.333 1.000 167 IV 153 IV 128 IIIs 124 IIIs 4.5 0.177 30d 1.500 1.000 167 IV 153 IV 133 IV 130 IV 5 0.177 40d 1.667 1.000 167 IV 153 IV 133 IV 130 IV 5.5 0.177 50d 1.833 1.000 167 IV 153 IV 133 IV 130 IV 5.5 0.177 60d 2.000 1.000 167 IV 153 IV 133 IV 130 IV 6 0.177 60d 2.000 1.000 167 IV 153 IV 133 IV 130 IV 7 0.207 70d 2.333 1.000 188 IV 172 IV 149 IV 146 IV	3.25	0.135	12d	1.083	1.000	107	IV	98	IV	82	IIIs	79	IIIs
4.5 0.177 30d 1.500 1.000 167 IV 153 IV 133 IV 130 IV 5 0.177 40d 1.667 1.000 167 IV 153 IV 133 IV 130 IV 5.5 0.177 50d 1.833 1.000 167 IV 153 IV 133 IV 130 IV 5.5 0.177 50d 1.833 1.000 167 IV 153 IV 133 IV 130 IV 6 0.177 60d 2.000 1.000 167 IV 153 IV 133 IV 130 IV 7 0.207 70d 2.333 1.000 188 IV 172 IV 149 IV 146 IV 8 0.207 80d 2.667 1.000 188 IV 172 IV 149 IV 146 IV	3.5	0.148	16d	1.167	1.000	121	IV	110	IV	95	IIIs	92	IIIs
5 0.177 40d 1.667 1.000 167 IV 153 IV 133 IV 130 IV 5.5 0.177 50d 1.833 1.000 167 IV 153 IV 133 IV 130 IV 6 0.177 60d 2.000 1.000 167 IV 153 IV 133 IV 130 IV 7 0.207 70d 2.333 1.000 188 IV 172 IV 149 IV 146 IV 8 0.207 80d 2.667 1.000 188 IV 172 IV 149 IV 146 IV	4	0.177	20d	1.333	1.000	167	IV	153	IV	128	IIIs	124	IIIs
5.5 0.177 50d 1.833 1.000 167 IV 153 IV 133 IV 130 IV 6 0.177 60d 2.000 1.000 167 IV 153 IV 133 IV 130 IV 7 0.207 70d 2.333 1.000 188 IV 172 IV 149 IV 146 IV 8 0.207 80d 2.667 1.000 188 IV 172 IV 149 IV 146 IV	4.5	0.177	30d	1.500	1.000	167	IV	153	IV	133	IV	130	IV
6 0.177 60d 2.000 1.000 167 IV 153 IV 133 IV 130 IV 7 0.207 70d 2.333 1.000 188 IV 172 IV 149 IV 146 IV 8 0.207 80d 2.667 1.000 188 IV 172 IV 149 IV 146 IV	5	0.177	40d	1.667	1.000	167	IV	153	IV	133	IV	130	IV
7 0.207 70d 2.333 1.000 188 IV 172 IV 149 IV 146 IV 8 0.207 80d 2.667 1.000 188 IV 172 IV 149 IV 146 IV	5.5	0.177	50d	1.833	1.000	167	IV	153	IV	133	IV		a a second
8 0.207 80d 2.667 1.000 188 IV 172 IV 149 IV 146 IV	6	0.177	60d	2.000	1.000	167	IV	153	IV	133	IV	130	IV
	7	0.207	70d	2.333	1.000	188	IV	172	IV	149		146	IV
9 0.207 90d 3.000 1.000 188 IV 172 IV 149 IV 146 IV	8	0.207	80d	2.667	1.000	188	IV	172	IV	149	IV	146	IV
	9	0.207	90d	3.000	1.000	188	IV	172	IV	149	IV	146	IV

1. Tabulated values (Z^*) have been multiplied by the penetration depth factor (C_d) and the toe-nail factor ($C_{tn}=0.83$).

2. Tabulated values (Z*) are for toe-nailed connections fabricated according to Figure 4.

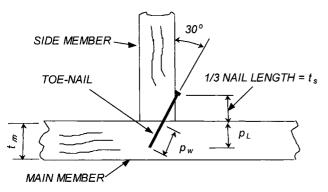


FIG. 4. Toe-Nail Diagram (Adapted from Breyer et al. 1999)

recommends limiting the design capacity of toe-nailed connections to 2.189 kN/m (150 lb/ft). This limitation applies to forces being transferred from diaphragms to shear walls, drag struts (collectors), or other elements, or from shear walls to other elements (*Recommended* 1996). The rationale behind this recommendation is based on shrinkage of blocking or close nail spacing, which might cause a weakened plane for wood splitting. This recommendation is also appropriate due to the difficulty of toe-nail installation and inspection.

SUMMARY

NDS bolted connection tables were modified to include the governing yield mode for the tabulated connection capacity. The NDS tables were also expanded to include additional side member thicknesses as well as the yield modes for each tabulated connection capacity. Toe-nail tables were created that present the nominal connection capacity and the yield mode. The nominal capacity is the result of multiplying the calculated connection capacity by the toe-nail factor and the penetration depth factor, when applicable. Using these tables alleviates the need for lengthy capacity and yield mode calculations. This allows the designer to quickly determine whether the connection behaves in a ductile or nonductile manner, according to the 1997 NDS. The appropriate load duration factor for wind and earthquake loading of 1.6 or 1.33 may then be applied to the strength of the connection in accordance with the 1997 UBC provisions. The following are general trends to be remembered when designing ductile connections:

- A decrease in fastener diameter, *D*, moves from brittle to ductile modes.
- An increase in side member thickness, *t_s*, or main member thickness, *t_m*, moves from brittle to ductile modes.
- An increase in wood dowel bearing strength, F_e , moves from brittle to ductile modes.

Even in the absence of a quantitative advantage associated with ductile connections (for example, 1997 UBC $C_D = 1.6$ versus 1.33), it is recommended that designers in regions of high seismic activity specify ductile connection yield modes rather than brittle yield modes since this can facilitate greater structural deformations without catastrophic failure in overload scenarios. From a practical standpoint, this may involve designing with a larger number of small diameter fasteners, in lieu of a few large diameter fasteners.

A more comprehensive set of bolt and nail/spike tables is available from the authors. These include more of the species, thicknesses, and connectors listed in the NDS tables.

Bolted Conne	ection Yield M	ode Equations
Single shear	Yield mode	Double shear
$Z = \frac{Dt_m F_{em}}{4K_{\theta}}$	I _m	$Z = \frac{Dt_m F_{em}}{4K_{\theta}}$
$Z = \frac{Dt_s F_{es}}{4K_{\theta}}$	Is	$Z = \frac{Dt_s F_{es}}{2K_{\theta}}$
$Z = \frac{k_1 D t_s F_{es}}{3.6 K_{\theta}}$	П	-
$Z = \frac{k_2 D t_m F_{em}}{3.2(1+2R_e)K_{\theta}}$	III _m	-
$Z = \frac{k_3 D t_s F_{em}}{3.2(2+R_e)K_{\theta}}$	IIIs	$Z = \frac{k_3 D t_s F_{em}}{1.6(2+R_e)K_{\theta}}$
$Z = \frac{D^2}{3.2 K_{\theta}} \sqrt{\frac{2 F_{em} F_{yb}}{3(1+R_e)}}$	IV	$Z = \frac{D^2}{1.6 K_{\theta}} \sqrt{\frac{2 F_{em} F_{yb}}{3(1+R_e)}}$

APPENDIX I.

Note: Mode Is does not apply to steel side plate connections.

Where

$$k_{1} = \frac{\sqrt{R_{e} + 2R_{e}^{2}\left(1 + R_{t} + R_{t}^{2}\right) + R_{t}^{2}R_{e}^{3}} - R_{e}\left(1 + R_{t}\right)}{(1 + R_{e})}$$

$$k_{2} = -1 + \sqrt{2(1 + R_{e}) + \frac{2F_{yb}\left(1 + 2R_{e}\right)D^{2}}{3F_{em}t_{m}^{2}}}$$

$$k_{3} = -1 + \sqrt{\frac{2(1 + R_{e})}{R_{e}} + \frac{2F_{yb}\left(2 + R_{e}\right)D^{2}}{3F_{em}t_{s}^{2}}}$$

$$R_e = F_{em} / F_{es}$$

 $R_t = t_m / t_s$

 t_m = thickness of main (thicker) member, inches

 t_s = thickness of side (thinner) member, inches

 F_{em} = dowel bearing strength of main (thicker) member, psi

Nailed Connection Yield Mode Equations	
	Yield mode
$Z = \frac{Dt_s F_{es}}{K_D}$	I _m
$Z = \frac{k_1 D p F_{em}}{K_D (1 + 2 R_e)}$	$\mathrm{III}_{\mathrm{m}}$
$Z = \frac{k_2 D t_s F_{em}}{K_D \left(2 + R_e\right)}$	III,
$Z = \frac{D^2}{K_D} \sqrt{\frac{2 F_{em} F_{yb}}{3(1+R_e)}}$	IV

Note: Mode Is does not apply to steel side plate connections.

Where:

$$k_{1} = -1 + \sqrt{2(1 + R_{e}) + \frac{2F_{yb}(1 + 2R_{e})D^{2}}{3F_{em}p^{2}}}$$
$$k_{2} = -1 + \sqrt{\frac{2(1 + R_{e})}{R_{e}} + \frac{2F_{yb}(2 + R_{e})D^{2}}{3F_{em}t_{s}^{2}}}$$

 $R_e = F_{em} / F_{es}$

p = penetration of nail or spike in main member (member holding point), inches

 t_s = thickness of side member or L/3 for toe-nailed connections, inches

 F_{em} = dowel bearing strength of main member (member holding point), psi

 F_{es} = dowel bearing strength of side member, psi

 F_{yb} = bending yield strength of nail or spike, psi

 $F_e = 16600 \ G^{1.84}$

D = nail or spike diameter, inches (When annularly threaded nail are used with threads at the shear plane, D = root

diameter of threaded portion of nail, inches)

$$K_D = 2.2$$
 for $D \le 0.17$ "

 $K_D = 10 D + 0.5$ for 0.17" < D < 0.25"

$$K_D = 3.0$$
 for $D \ge 0.25$ "

 F_{es} = dowel bearing strength of side (thinner) member, psi

 $F_{e||} = 11200 \ G$

$$F_{e\perp} = \frac{6100 \, G^{1.45}}{\sqrt{D}}$$

 F_{yb} = bending yield strength of bolt, psi

D = nominal bolt diameter, inches

$$K_{\theta} = 1 + \left(\theta_{max} / 360^\circ\right)$$

 θ_{max} = maximum angle of load to grain (0° $\leq \theta \leq$ 90°)

APPENDIX II. REFERENCES

- "ANSI/AF&PA NDS—1997 National Design Specification for wood construction." (1997). American Forest & Paper Association, Washington, D.C.
- Breyer, D. E., Fridley, K. J., and Cobeen, K. E. (1999). *Design of wood structures*, 4th Ed., McGraw-Hill, New York.
- Dolan, J. D., Gutshall, S. T., and McLain, T. E. (1995). "Monotonic and cyclic tests to determine short-term load duration performance of nail and bolt connections, Vol. I: Summary report." *Rep. No. TE-1994-001*, Timber Engrg. Ctr., Virginia Polytechnic Institute and State University,

Blacksburg, Va.

- Dolan, J. D., Gutshall, S. T., and McLain, T. E. (1996). "Determination of short-term duration-of-load performance of nailed and bolted connection using sequential phased displacement tests, Vol. I: Summary report." *Rep. No. TE-1994-003*, Timber Engrg. Ctr., Virginia Polytechnic Institute and State University, Blacksburg, Va.
- Recommended lateral force requirements and commentary, 6th Ed. (1996). Structural Engineers Association of California (SEAOC) Seismology Committee.
- Uniform building code. (1997). International Conference of Building Officials (ICBO), Whittier, Calif.