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APPLICATION OF DYNAMIC SYSTEM IDENTIFICATION TO

TIMBER BEAMS. I

By S. T. Peterson,1 D. I. McLean,2 M. D. Symans,3 D. G. Pollock,4 W. F. Cofer,5

R. N. Emerson,6 and K. J. Fridley7

ABSTRACT: In this first part of a two-part paper, development of a method of dynamic system identification
for timber beams is presented with an analytical verification of the method using a finite-element model. A
method of global nondestructive evaluation for identifying local damage and decay in timber beams is investi-
gated in this paper. Experimental modal analysis is used in conjunction with a previously developed damage
localization algorithm. The damage localization algorithm utilizes changes in modal strain energy between the
mode shapes of a calibrated model, representing the undamaged state of the beam of interest, and the experi-
mentally obtained mode shapes for a timber beam. Analytical evaluations were performed to demonstrate and
verify the use of this method of global nondestructive evaluation for the localization of damage or decay in
timber beams. In a companion paper, experimental laboratory tests are presented that verify the use of dynamic
system identification to locate damage within timber beams.

INTRODUCTION

Nondestructive evaluation (NDE) of wood is the science
and art of determining the material properties and/or structural
capacity of individual members or for an entire timber struc-
ture without impairing the member or structure in its useful-
ness for its intended purpose. A number of methods have been
developed and implemented in the field of nondestructive eval-
uation for wood. These methods include visual inspection,
stress wave, drill resistance, radiography, ultrasonics, and de-
flection/vibration analysis (Emerson et al. 1998).

Many of the methods already developed for the nondestruc-
tive evaluation of wood are performed on a very localized
scale. Conducting an evaluation of an entire structure using
these methods can be very time-consuming and inefficient. It
is therefore desirable to develop a method of nondestructive
testing for timber structures that can identify damage or decay
from a global perspective. The method selected in this study
for global evaluation was deflection/vibration analysis, specif-
ically, experimental modal analysis.

Experimental modal analysis is typically defined as the de-
termination of natural frequencies of vibration, mode shapes,
and damping ratios from experimental vibration measure-
ments. This method of analysis was selected primarily because
of the global nature of the form of evaluation. The effective-
ness of experimental modal analysis has been demonstrated in
terms of its capability to identify and/or locate damage in steel
bridges (Mazurek and DeWolf 1990; Stubbs and Kim 1996a).
To perform experimental modal testing, the structure is excited

1Grad. Student, Dept. of Civ. and Envir. Engrg., Washington State
Univ., Pullman, WA 99164-2910.

2Prof., Dept. of Civ. and Envir. Engrg., Washington State Univ., Pull-
man, WA 99164-2910.

3Asst. Prof., Dept. of Civ. and Envir. Engrg., Washington State Univ.,
Pullman, WA 99164-2910.

4Asst. Prof., Dept. of Civ. and Envir. Engrg., Washington State Univ.,
Pullman, WA 99164-2910.

5Assoc. Prof., Dept. of Civ. and Envir. Engrg., Washington State Univ.,
Pullman, WA 99164-2910.

6Asst. Prof., School of Civ. and Envir. Engrg., Oklahoma State Univ.,
Stillwater, OK 74078-5033.

7Prof., Dept. of Civ. and Envir. Engrg., Washington State Univ., Pull-
man, WA 99164-2910.

in its modes of vibration and the response is measured at sev-
eral points within the structure. Impulse excitation was se-
lected over ambient traffic and mass-shaker excitation as the
method used to excite the structure since many timber struc-
tures are located in remote areas, and this allows the testing
equipment to be as simple as possible.

Once the vibration measurements have been made for the
structure of interest, the modal parameters must be determined
and analyzed to identify possible locations of damage within
the structure. There have been a number of methods developed
to analyze the modal parameters of a structure to identify and/
or locate possible areas of damage (Aktan et al. 1992; Rag-
havendrachar and Aktan 1992; Stubbs and Kim 1996a). Al-
though changes in the natural frequencies of vibration may
determine whether a structure has been damaged, the damage
cannot be located within the structure using changes in natural
frequencies alone (Alampalli et al. 1992). In this study, mode
shapes were the primary modal parameter selected to indicate
whether the structure may have been damaged since changes
in the mode shapes also have the potential to identify the lo-
cation of damage within the structure. The method of damage
localization used in this study was largely based on methods
developed previously for steel plate girders and highway
bridges to localize and estimate the severity of damage within
the structure (Bolton et al. 1998; Stubbs et al. 1998). Several
analytical studies have been published that verify the perfor-
mance of the damage localization and severity estimation al-
gorithm (Stubbs and Garcia 1996b; Stubbs et al. 1997).

The method outlined above has not been used previously to
locate damage or decay within timber structures. To begin the
application of experimental modal analysis and the damage
localization method to timber structures, analytical studies and
laboratory tests are performed on simply supported timber
beams. These verification studies are performed to confirm the
applicability of the method where natural variability in mate-
rial properties exists within a timber beam as well as simulated
damage. The method will be extended to more complex timber
structures in the future.

This paper presents discussion on experimental modal anal-
ysis and associated signal processing, background information
on the damage localization algorithm, and results from an an-
alytical verification of the approach. A companion paper (Pe-
terson et al. 2001) presents results from laboratory tests using
the damage localization algorithm to locate simulated damage
in timber beams, and the experimental results are compared
with the results from the analytical investigation. Based on the
results of the two papers, the effectiveness of using a global
nondestructive evaluation method for identifying damage in
timber beams will be demonstrated.



SIGNAL PROCESSING AND DETERMINATION OF
MODAL PARAMETERS

Impact vibration tests are performed by impacting a struc-
ture with an instrumented impact hammer and measuring the
acceleration response at several points within the structure.
The acceleration response is measured at a sufficient number
of points along the span so that the mode shapes can be ac-
curately reconstructed through interpolation (Stubbs and Park
1996c).

The maximum frequency sufficiently excited in the structure
by the impulse excitation is referred to as the cutoff frequency.
The cutoff frequency vc approximately corresponds to the
point at which the magnitude of the frequency spectrum of the
impulse signal drops 10 or 20 dB below its maximum value
(Inman 1996). At frequencies higher than vc, the test structure
does not receive enough energy to sufficiently excite the as-
sociated natural modes of vibration. Thus, the cutoff frequency
is used to determine the useful range of modal frequencies
excited in the beam.

Impact force and acceleration response should be recorded
at a sampling frequency Fs twice that of either the highest
natural frequency of vibration of interest or the highest fre-
quency sufficiently excited by the impulse excitation, i.e., the
cutoff frequency. The sampling frequency requirement is based
on two effects of signal processing. First, in performing a Fou-
rier transform to examine the recorded data in the frequency
domain, the useful range of frequency domain data will range
from zero to the Nyquist frequency (Fs/2). Secondly, aliasing
problems in the measured response can be avoided if the sam-
pling frequency is at least equal to twice the highest frequency
sufficiently excited, since the aliased data will then fall in a
range above the useful range of the input excitation.

The natural frequencies and mode shapes are obtained from
the recorded time domain data by evaluating the frequency
response function (FRF) for each measurement point. The FRF
is defined as the ratio of the Fourier transforms of the output
and input signals. However, better results are obtained in prac-
tice by evaluating the FRF as the ratio of the cross-spectrum
between the input and output to the power spectrum of the
input signal (Halvorsen and Brown 1977). Specifically, this
method minimizes the effects of noise associated with the out-
put. The FRF H(v) was calculated as follows:

G (v)uv
H(v) = (1)

G (v)u

where cross-spectrum between u(t) andG (v) = U*(v)V(v),uv

v(t); Gu(v) = U*(v)U(v), power spectrum of u(t); V(v) =
Fourier transform of v(t); U(v) = Fourier transform of u(t);
U*(v) = complex conjugate of U(v); u(t) = input or excitation
signal; and v(t) = output or response signal.

Data windowing is commonly used in signal processing to
reduce noise in the recorded time domain data or to allow the
time domain signal to be more accurately converted into the
frequency domain via the Fourier transform. An exponential
window is applied to the acceleration data, i.e., the output
v(t), to make the signal appear more periodic, thus improving
the results of the Fourier transformation v(v). A rectangular
window is applied to the impact force data to remove the noise
recorded when the impact hammer is not in contact with the
beam, thus improving the results of the Fourier transformation
of the input signal u(v). The window functions are applied to
the time domain signals prior to calculating the FRF. The nat-
ural frequencies of vibration of the beam are identified as
spikes in the plot of the amplitude of the FRF. These spikes
in the amplitude of the FRF indicate resonance in the beam
response.

The amplitude of the spike in the FRF at frequency vi for
measurement location j is proportional to the modal coordinate

fij for location j in mode shape i. The mode shape coordinates
fij along the span of the beam (i.e., for all j) for mode i are
entered into a column vector. This vector then defines the
mode shape of the beam for mode i corresponding to the nat-
ural frequency of vibration vi.

For a given sampling location, the amplitudes of the mode
shape coordinates will vary from one test to the next due to
the variation in applied impulse force. The mode shape coor-
dinates are normalized by dividing the mode shape coordinates
by the euclidean norm of the respective mode shape vector.
This is done to minimize the variation in amplitude so that
more consistent mode shapes can be obtained. To reduce the
effect of errors in measuring the experimental mode shapes,
the normalized mode shape vectors from several tests are av-
eraged.

The FRF H(v) will likely indicate that there are several
frequencies adjacent to the dominant natural frequencies of
vibration that may appear to correspond to the mode shape of
interest. Modal assurance criteria (MAC) values are used to
determine which of the possible experimental modes best cor-
relates with the corresponding theoretical mode shape. The
theoretical mode shapes can be obtained from a finite-element
model that describes the dynamic response of the beam. The
MAC values are calculated for each of the possible experi-
mental mode shapes using the following expression:

2n

f fTj EjSO D
j=1

MAC = (2)n n

2 2f fTj EjO O
j=1 j=1

where fTj = j th coordinate of the theoretical mode shape;
fEj = jth coordinate of the experimentally obtained mode
shape; and n = number of coordinates in the mode shape vec-
tors. The MAC values will range from 0 to 1.0 (0 indicating
no correlation with the theoretical mode shape, and 1.0 indi-
cating perfect correlation with the theoretical mode shape).

Experimentally obtained mode shape vectors will have as
many coordinates as locations at which the acceleration was
measured along the span of the beam. Values between the ex-
perimentally measured mode shape coordinates can be inter-
polated using Shannon’s sampling theory to generate mode
shape vectors of greater length. The reconstructed mode shape
vector is given by the following expression:

x
sin p 2 nH S DJ` T

S(x) = S(nT ) (3)O
n=2` x

p 2 nS DT

where S(x) = interpolated mode shape coordinate at position
x; S(nT) = experimental mode shape coordinates at position
nT; T = spacing of the experimental mode shape coordinates;
and n = number of coordinates in experimental mode shape
vectors.

To avoid truncation errors in reconstructing the mode shapes
in the spatial domain, the experimental mode shape vectors
should be spatially repeated to obtain better results using Shan-
non’s theory. The interpolated mode shape given by (3) rep-
resents the exact reconstruction of the mode shape of interest
since the summation is for all n between negative and positive
infinity, i.e., for an infinite number of spatially repeated ex-
perimental mode shape vectors. Acceptable results can be ob-
tained using several repeats of the experimental mode shape
coordinates, i.e., for a finite range of values for n. A more
detailed explanation of applying Shannon’s sampling theory to
reconstruct mode shapes can be found in Park and Stubbs
(1995) and in Stubbs and Park (1996c).



DAMAGE LOCALIZATION

To localize the inflicted damage present in the beam of in-
terest in this investigation, a method of damage localization
developed previously (Stubbs et al. 1995) was used. The lo-
calization method is based on the differences in modal strain
energy between an undamaged or pristine structure and that
of the damaged structure.

An expression for the modal strain energy stored in the
beam for the ith mode of vibration Ui is given below

L
1 2U = E(x)I{f0(x)} dx (4)i iE2 0

In this expression, E(x) = modulus of elasticity of the beam
that varies along the length for a timber beam; I = second
moment of area of the cross section of the beam; and =f0(x)i

second derivative of the ith mode shape with respect to the
position along the beam (obtained numerically). If the beam
is divided into j elements, the modal stain energy concentrated
in the jth element for the ith mode is given by

(EI )j 2U = {f0(x)} dx (5)ij iE2 j

where the integral is applied over the limits of the jth element
only and it is assumed that E(x) is constant over the length of
element j. The fraction of modal strain energy for the ith
mode, concentrated in the jth element, can be expressed as

Uij
F = (6)ij

Ui

where 0 < Fij < 1.0. Expressions similar to those given in (4)–
(6) can be written for the damaged beam. The damaged state
of the beam will be denoted with a superscript asterisk.

To develop an indicator of damage localization, the follow-
ing approximate expression that relates the behavior of the
undamaged structure to that of the damaged structure is used:

1 1 F > 1 1 F* (7)ij ij

The fundamental indicator of damage used in the derivation
of the damage localization algorithm is the quotient F*/Fij ij

(Stubbs and Garcia 1996b). During the derivation of the al-
gorithm, the axes defining the Fij and values are shiftedF*ij
from 0 to 21 to prevent the quotient from becoming(F*/F )ij ij

undefined as Fij approaches 0. This is reflected in the addition
of unity to both sides of (7). The condition of Fij approaching
0 will occur if the element is located at the node point of a
mode, and simultaneously, as the element size approaches zero
(Stubbs and Garcia 1996b). Although the algorithm has been
adjusted so that the damage indicator values will no longer
become undefined, the algorithm may still be prone to false-
positive locations of damage (indicating damage where there
is no actual damage in the beam).

The damage indicator for the jth element and the ith mode
bij may then be defined as

1 1 F*ij
b =ij 1 1 Fij

L L

2 2 2{f0*(x)} dx 1 {f0*(x)} dx {f0(x)} dxi i iFE E G E
j 0 0

= L L

2 2 2{f0(x)} dx 1 {f0(x)} dx {f0*(x)} dxF i i iE E G E
j 0 0 (8)

For brevity here, see Stubbs et al. (1995) for a more thorough
derivation of (8). The above expression attempts to quantify
changes in stiffness at a given location j by using pre- and

postdamage mode shapes. Each of the terms that appear on
the right side of the above equation can be measured. Also,
each of the mode shape coordinates represents a location along
the span of the beam that could possibly be damaged. For this
reason, the mode shape vectors are interpolated using Shan-
non’s theory to increase the number of possible damage lo-
cations that can be identified.

To account for all available modes NM the damage indicator
for a single element j is given as

NM

NumijO
i=1

b = (9)j NM

DenomijO
i=1

where Numij = numerator of bi j in (8); and Denomi j = denom-
inator of bij in (8).

Based on the approximations and assumptions made in the
derivation of the damage localization algorithm, the value of
bj for all j elements is very nearly equal to 1.0. In comparing
the damage indicator value for one element with another it is
difficult to discern if the bj values indicate damage at the jth
element. Thus, the damage indicator values bj are assumed to
be random variables and are transformed into a standard nor-
mal space to scale the values. This is done to more easily
determine if the beam is damaged at location j. Standard nor-
mal damage indicator values are denoted as Zj. Hypothesis
testing is used to classify the elements in one of two classes:
(1) element j is undamaged; or (2) element j is damaged. A
threshold value is judgmentally selected and used to determine
which of the j elements are possibly damaged along the span
of the beam, e.g., Zj > 2 indicates damage at member j within
a 95% confidence interval. Damage indicator values are trans-
formed into standard normal space using the following equa-
tion:

b 2 mj b j
Z = (10)j

sb j

where = mean of bj values for all j elements; and =m sb j b j

standard deviation of bj for all j elements.

BASELINE MODEL

For a timber structure in the field, modal parameters of the
as-built or pristine structure will typically not be available.
Thus, a computer model of the beam must be developed and
calibrated to represent the undamaged state of the beam. To
do this, an initial beam model is developed using Euler-Ber-
noulli beam elements and the best information available for
the material properties needed. Due to the significant shear
deformation in wood, the beam element stiffness matrix was
modified to consider the effects of shear deformation. The el-
ement stiffness matrix kj is given below

12 6 12 6
23 2 3 2L L L L

6 4 g 6 2
1 1 2 (1 2 g)S D2 2L L 2 L LEI

k = (11)j 1 1 2g 12 6 12 6
2 2 23 2 3 2L L L L

6 2 6 4 g
(1 2 g) 2 1 2S D2 2L L L L 2

where g = dimensionless shear constant defined as (Weaver
and Gere 1980)



6 fEI
g = (12)2GAL

where f represents the form factor for the shape of the beam
section; G is the modulus of rigidity; and A is the cross-sec-
tional area of the beam. For rectangular cross sections, f is
typically taken as 6/5.

To calibrate the beam model, stiffness properties of the
model are adjusted such that the eigenfrequencies (v2) of the
model match the corresponding eigenfrequencies of the un-
damaged beam as measured in the laboratory. The change in
natural frequency of vibration is proportional to the square root
of the change in stiffness of the beam. Thus, a relatively large
amount of damage or decay is required before significant
changes in frequencies will be measured (Salawu 1997). In the
case of an evaluation of a possibly damaged beam where un-
damaged modal parameters are unavailable, the baseline model
is calibrated such that the model yields the same natural fre-
quencies of vibration as measured in the possibly damaged
beam in its present state. For small magnitudes of localized
damage or decay, the calibrated model should represent the
dynamic response of the beam sufficiently well for the purpose
intended.

The calibration process used herein to adjust the properties
of the beam model is the same as that developed by Stubbs
and Kim (1996a). The calibration process is described below.

To calibrate the beam model such that the calculated natural
frequencies of vibration of the model match the experimentally
measured natural frequencies of vibration of the structure, a
sensitivity matrix F is first developed. The sensitivity matrix
describes the relationship between the modifications made to
the input stiffness properties of the model and their resulting
effect on the eigenfrequencies (v2).

The sensitivity matrix F is constructed as follows. First, M
eigenfrequencies for the model are determined by solving the
eigenproblem for the initial model. The number of eigenfre-
quencies obtained M should match the number of frequencies
that were able to be confidently determined in the lab or field
testing. Next, a known severity of ‘‘damage’’ or a known mod-
ification is made on the first property that will be adjusted in
the calibration process. For example, the property km is mod-
ified according to the following expression:

k* = k (1 1 a ) (13)m m m

where the asterisk denotes the modified stiffness property of
the model; and am = fractional modification to stiffness prop-
erty km.

If the modulus of elasticity (MOE) is desired to be changed
during the calibration process, the MOE of each of the ele-
ments would be modified according to the above expression.
The beam model would then be constructed as before, i.e.,
with the same geometry, but with the modified value for the
MOE. The eigenproblem would again be solved, yielding ei-
genfrequencies that differed from the initial model. Fractional
changes in eigenfrequencies di between the initial model and
the modified model for the M frequencies calculated are then
determined as follows:

2vi
d = 2 1 (14)i S D2vi0

where = eigenfrequency for mode i from the modified beam2vi

model; and = eigenfrequency for mode i for the initial2vi0

beam model. The first column of the sensitivity matrix is then
constructed by dividing the column of di values by the severity
of the modification made to property m (am). The above pro-
cess is repeated for the number of properties that are desired
to be changed in the model. When finished, the sensitivity
matrix should have as many columns as stiffness-related prop-

erties to be modified in the calibration process, and as many
rows as the number of natural frequencies of vibration that can
be confidently measured.

In order to maintain a well-determined system, the number
of properties to be changed in the model should be equal to
the number of frequencies that can be confidently measured
during laboratory or field testing. Additionally, an overdeter-
mined system may help in the convergence of the calibration
process. An overdetermined system can be achieved by choos-
ing the number of properties to be modified as less than the
number of frequencies that can be measured experimentally.

To make necessary modifications to the beam model, the
following iterative process is used. First, a column of frac-
tional differences in eigenfrequencies between the experimen-
tally measured eigenfrequencies and those of the initial2vi-exp

beam model vi0 are calculated as follows:
2vi-exp

D = 2 1 (15)i 2vi0

where = experimentally measured eigenfrequency for2vi-exp

mode i; and, = eigenfrequency for the initial beam model,2vi0

mode i. Modifications to be made to the beam model are given
in the vector a, which is calculated as follows:

21a = F D (16)

where F = sensitivity matrix; and D = vector of fractional
differences in eigenfrequencies Di. The vector a defines the
modifications to be made to the respective properties of the
model (respective according to the order with which the col-
umns of the sensitivity matrix were constructed). The model
is then reconstructed with the modifications made as given
above, and the eigenvalue problem is again solved. The col-
umn of fractional changes in eigenfrequencies is again calcu-
lated, this time between the experimentally measured eigen-
frequencies and those from the updated model. The a vector
is again calculated to determine the next modification that
should be made to the model. This process is repeated until
the vectors D or a are nearly equal to zero, at which point the
beam model should yield the same natural frequencies of vi-
bration as the experimentally measured frequencies.

For a well-determined system where the number of modified
stiffness properties of the model is equal to the number of
frequencies available from experimental testing, the sensitivity
matrix F will be a square matrix and can be inverted using a
standard inversion process. However, for an overdetermined
system, the sensitivity matrix will have more rows than col-
umns. Therefore, the inverse is approximated using the follow-
ing expression for the least-squares generalized inverse:

21 T 21 TF > (F F ) F (17)

Using the calibrated baseline model, mode shapes (eigenvec-
tors) are obtained and used in the damage indicator calcula-
tions to represent the mode shapes corresponding to the un-
damaged state of the beam.

ANALYTICAL VERIFICATION OF DAMAGE
LOCALIZATION ALGORITHM

To demonstrate the use of the damage localization algorithm
in locating damage along the span of a beam, a finite-element
model was constructed and used to calculate the modal param-
eters needed for the undamaged and damaged states of the
beam. A finite-element plane stress model was used to model
the behavior of a 10.16 cm 3 20.32 cm (4 in. 3 8 in.) timber
beam with a span of 5.08 m (200 in.). The dynamic longitu-
dinal modulus of elasticity Ex was taken as 17.24 GPa (2.5 3
106 psi) based on the results of laboratory stress-wave tests
performed on several Douglas fir timber beams. Ey and Gxy



FIG. 2. Damage Indicator Values for Damage Case 2 (Modes
Considered: 1 and 2)

FIG. 1. Damage Indicator Values for Damage Case 1 (Modes
Considered: 1 and 2)

TABLE 2. Shifts in Natural Frequencies of Vibration of Analyt-
ical Model

Model
(1)

Damage case
(2)

v1

(Hz)
(3)

v2

(Hz)
(4)

1 Undamaged 13.186 49.863
1 1 13.179 49.813
1 2 13.145 49.576
2 Undamaged 13.165 49.600
2 3 13.047 48.809
2 4 12.680 46.604
2 5 11.964 43.185
2 6 9.277 37.110
2 7 8.958 43.260

TABLE 1. Simulated Damage for Analytical Verification

Damage
case
(1)

No. of
elements
removed

(2)

Damage Size

Width
mm (in.)

(3)

Depth
mm (in.)

(4)
Location

(5)

1 1 6.4 (0.25) 6.4 (0.25) 1/4-Point
2 2 6.4 (0.25) 12.7 (0.50) 1/4-Point
3 1 25.4 (1.00) 25.4 (1.00) 1/4-Point
4 2 25.4 (1.00) 50.8 (1.00) 1/4-Point
5 3 25.4 (1.00) 76.2 (3.00) 1/4-Point
6 3 25.4 (1.00) 76.2 (3.00) 1/4-Point
6 4 25.4 (1.00) 101.6 (4.00) 5/8-Point
7 3 25.4 (1.00) 76.2 (3.00) 1/4-Point
7 4 25.4 (1.00) 101.6 (4.00) Midspan

were both taken as 5% of Ex to represent average values for
Douglas-fir [U.S. Department of Agriculture (USDA) (1999)].
Ey is the transverse modulus of elasticity for the timber beam,
i.e., the radial and tangential moduli of elasticity for wood are
represented in the model as the single value Ey, and Gxy is the
modulus of rigidity.

A frequency analysis was performed to obtain the natural
frequencies of vibration and the corresponding mode shapes
for the first two modes of vibration. Mode shape displacements
were recorded at locations within the model that would cor-
respond to sampling locations in an experimental test. These
mode shape displacement values were used to reconstruct
mode shapes using Shannon’s sampling theory. The model was
then ‘‘damaged’’ by removing elements from the model. Mo-
dal parameters for the damaged beam were obtained by re-
peating the frequency analysis. Reconstructed mode shapes
were used with the damage localization algorithm to attempt
to localize the damage inflicted in the model. Only the first
two modes were considered to demonstrate the use of the dam-
age localization algorithm where a limited number of modal
parameters are available.

It was desired to determine the minimum severity of damage
that could be correctly detected and localized in a theoretical
model. Thus, for the first damage case, one element approxi-
mately 6.4 mm 3 6.4 mm (1/4 in. 3 1/4 in.) in size was
removed from the tension face at the quarter-point of the beam
near the pin support to simulate a very small magnitude of
damage. Successive damage cases were then simulated by re-
moving more elements from the tension face at the quarter-
point to note any trends in the detection of damage with pro-
gressive severity of simulated damage. Multiple locations of
inflicted damage were also analyzed to verify the use of the
algorithm in locating damage at more than one location along
the span.

As discussed previously, hypothesis testing was used to de-
termine where the damage indicator values show damage
along the span. For each of the damage cases below, the con-
fidence interval was set such that Zj > 2 indicates damage
(corresponding to approximately 95% confidence).

Elements removed for each of the damage cases are given
in Table 1. The location of the removed elements is given as
the distance away from the pin support, expressed as a fraction
of the span of the beam model. For example, the 1/4-point
would be located at a distance equal to 1/4 of the span away
from the pin support. The 3/4-point would then be located at
a distance equal to 3/4 of the span away from the pin support,
or at the 1/4-point adjacent to the roller support for the simply
supported beam model. It should be noted that two different
models were used in the analytical verification. The model
used for damage cases 1 and 2 used a refined mesh near the
1/4-point from the pin support so that a small magnitude of
damage could be inflicted. The model used for damage cases

3–7 used a uniform mesh of elements approximately 25.4 mm
3 25.4 mm (1 in. 3 1 in.) in size.

Changes in natural frequencies of vibration for the first two
modes of vibration for each of the damage cases are given in
Table 2. It is seen in Table 2 that the frequencies for the un-
damaged models differ slightly from each other. This is due
to the different meshes used to construct the model. For dam-
age cases 1 and 2, the undamaged modal parameters used in
the damage localization algorithm were obtained using the un-
damaged model 1. For damage cases 3–7, the undamaged mo-
dal parameters used in the damage localization algorithm were
obtained using the undamaged model 2.

The statistically normalized damage indicator values (Zj) for
each of the first five damage cases are shown in Figs. 1–5. It
can be seen in these figures that the magnitude of the damage
indicator values at the location of damage increases with in-
creasing severity of damage. Consequently, the confidence in



FIG. 3. Damage Indicator Values for Damage Case 3 (Modes
Considered: 1 and 2)

FIG. 4. Damage Indicator Values for Damage Case 4 (Modes
Considered: 1 and 2)

FIG. 5. Damage Indicator Values for Damage Case 5 (Modes
Considered: 1 and 2)

FIG. 8. Damage Indicator Values for Damage Case 7 (Modes
Considered: 1 and 2)

FIG. 7. Damage Indicator Values for Damage Case 7 (Mode
Considered: 1)

FIG. 6. Damage Indicator Values for Damage Case 6 (Modes
Considered: 1 and 2)

detecting the damage using the localization algorithm in-
creases with increasing severity of damage. The noted trend is
similar to the conclusions found in previous studies where the
damage localization algorithm was used to estimate the sever-
ity of damage at identified locations in steel plate girders
(Stubbs et al. 1998) and space truss models (Park and Stubbs
1996).

As noted in Table 1, damage case 6 consisted of simulated
damage at both the 1/4-point and the 5/8-point. The analysis
was performed for this damage case to test the damage local-
ization algorithm in locating damage at more than one location
within the beam. Given the elements already removed at the
1/4-point from damage case 5, elements were removed from
the tension face at the 5/8-point, one at a time, until the dam-

age at both locations could be detected. Both locations of dam-
age could not be detected simultaneously until the severity of
damage at the 5/8-point consisted of four removed elements.
The variation in damage indicator values for damage case 6
is shown in Fig. 6.

It was noted during the evaluation of the damage localiza-
tion algorithm that the higher modes had a dominating con-
tribution to the damage indicator values when each of the ex-
perimentally obtained modes were considered as defined by
(9). To test the algorithm performance in detecting damage at
a location where only the first mode should correctly locate
the damage, an additional analytical evaluation was performed.
For damage case 7, the damage already inflicted in damage
case 5 was used in combination with the removal of four el-



ements from the tension face at midspan. Since mode shape 2
has a node at midspan, only mode shape 1 should detect the
stimulated damage at midspan. The question here is whether
or not both locations of damage can be detected when the
contributions from modes 1 and 2 are combined as per (9).
Variation in damage indicator values from both the contribu-
tion of mode 1 alone as well as from the contribution of the
first two modes is shown in Figs. 7 and 8, respectively.

From Fig. 8, it is seen that the localization algorithm, when
using the combination of the first two modes, is unable to
detect the damage at both locations simultaneously. This is
largely due to the fact that the contribution to the damage
indicator values from mode 2 dominates the contribution from
mode 1. In fact, the damage indicator variation shown in Fig.
8 looks essentially identical to the damage indicator variation
when considering mode 2 alone. As shown in Fig. 7 when
only mode 1 is considered, the damage at the midspan is de-
tected and correctly located, but the damage at the quarter-
point cannot be detected. Thus, the mode shapes selected to
be used in the damage localization algorithm should be se-
lected according to the location of the damage. To correctly
detect multiple or unknown locations of damage within the
beam, it may be necessary to consider the damage indicator
variation for each mode individually as well as the variation
corresponding to the combination of modes.

CONCLUSIONS

In this paper, a technique to conduct experimental modal
analysis was developed, a damage localization algorithm was
presented, and an analytical evaluation was conducted to de-
termine the sensitivity of the algorithm to various cases of
simulated damage in a plane-stress simply supported beam
model. For the results of the analytical verification of the dam-
age localization algorithm, it can be concluded that the algo-
rithm can identify the location of even small magnitudes of
simulated damage within a beam model. Noted trends in which
the standard normal damage indicator values increase in mag-
nitude with increasing severity of simulated damage show that
the algorithm has the potential to also predict the severity of
the identified damage. For multiple or unknown locations of
damage, each of the mode shapes available should be consid-
ered separately as well as combined to best identify all pos-
sible locations of damage.

In the second part of this two-part paper, the developed
method of global nondestructive evaluation will be verified
experimentally through laboratory tests performed on simply
supported timber beams.
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APPENDIX II. NOTATION

The following symbols are used in this paper:

Ex, E(x) = longitudinal modulus of elasticity;
Ey = transverse modulus of elasticity;
F = sensitivity matrix;

F , F*ij ij = fraction of modal strain energy concentrated in ele-
ment j for mode i;

Fs = sampling frequency;
f = form factor for shear constant;

G, Gxy = modulus of rigidity;
Gu(v) = power spectrum of u(t);

G (v)uv = cross spectrum between u(t) and v (t);
g = shear constant;

H(v) = frequency response spectrum;
I = second moment of area;
i = natural frequency of vibration, mode;
j = element;

kj = element stiffness matrix for element j;
km = stiffness property to be modified;
L = span length;
n = number of coordinates in mode shape vectors;

S(nT ) = experimentally measured mode shape coordinate at
position nT;

S(x) = interpolated mode shape coordinate at position x;
T = spacing of experimentally measured mode shape co-

ordinates;
U , U*ij ij = modal strain energy for mode i, element j;

Zj = standard normal damage indicator value for element j;



a = vector of fractional stiffness modification values;
am = fractional stiffness modification value for stiffness

property m;
bij = damage indicator value for mode I, element j;
D = vector of fractional changes in eigenfrequencies;

Di, di = fractional changes in eigenfrequencies for mode i;
fEj = mode shape coordinate for experimental mode shape,

element j;
fi = mode shape vector corresponding to mode of vibra-

tion i;

fi j = mode shape coordinate for mode i, element j;
fTj = mode shape coordinate for theoretical mode shape,

element j;
mbj = mean of bj values for all j elements;
sbj = standard deviation of bj values for all j elements;
vc = cutoff frequency;
vi = natural frequency of vibration for mode i;

2vi-exp = experimentally measured eigenfrequency for mode i,
and

2vi0 = eigenfrequency for initial beam model, mode I.
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