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Cellular/Molecular

Calmodulin-Dependent Kinase Kinase/Calmodulin Kinase I
Activity Gates Extracellular-Regulated Kinase-Dependent
Long-Term Potentiation

John M. Schmitt,* Eric S. Guire,* Takeo Saneyoshi, and Thomas R. Soderling
Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239

Intracellular Ca 2� and protein phosphorylation play pivotal roles in long-term potentiation (LTP), a cellular model of learning and
memory. Ca 2� regulates multiple intracellular pathways, including the calmodulin-dependent kinases (CaMKs) and the ERKs (extracel-
lular signal-regulated kinases), both of which are required for LTP. However, the mechanism by which Ca 2� activates ERK during LTP
remains unknown. Here, we describe a requirement for the CaMK-kinase (CaMKK) pathway upstream of ERK in LTP induction. Both the
pharmacological inhibitor of CaMKK, STO-609, and dominant-negative CaMKI (dnCaMKI), a downstream target of CaMKK, blocked
neuronal NMDA receptor-dependent ERK activation. In contrast, an inhibitor of CaMKII and nuclear-localized dnCaMKIV had no effect
on ERK activation. NMDA receptor-dependent LTP induction robustly activated CaMKI, the Ca 2�-stimulated Ras activator Ras-GRF1
(Ras-guanyl-nucleotide releasing factor), and ERK. STO-609 blocked the activation of all three enzymes during LTP without affecting
basal synaptic transmission, activation of CaMKII, or cAMP-dependent activation of ERK. LTP induction itself was suppressed �50% by
STO-609 in a manner identical to the ERK inhibitor U0126: either inhibitor occluded the effect of the other, suggesting they are part of the
same signaling pathway in LTP induction. STO-609 also suppressed regulatory phosphorylation of two downstream ERK targets during
LTP, the general translation factors eIF4E (eukaryotic initiation factor 4) and its binding protein 4E-BP1 (eukaryotic initiation factor
4E-binding protein 1). These data indicate an essential role for CaMKK and CaMKI to link NMDA receptor-mediated Ca 2� elevation with
ERK-dependent LTP.
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Introduction
Protein phosphorylation is one of the most prevalent mecha-
nisms for modulating neuronal functions, including long-term
potentiation (LTP) (Kandel, 2001; Lisman et al., 2002), a cellular
model of learning and memory (Malenka, 2003; Lynch, 2004).
Two protein kinase families highly expressed in brain that have
been implicated in molecular mechanisms regulating LTP are the
Ca 2�/calmodulin-dependent kinases (CaMKs) and ERK1 and
ERK2 (extracellular signal-regulated kinases) (Soderling, 2000;
Sweatt, 2004). The CaMK family, which is activated in response
to elevations of intracellular Ca 2�, includes CaMKII (Soderling
et al., 2001; Lisman et al., 2002; Colbran and Brown, 2004) and
the CaMK-kinase (CaMKK) cascade consisting of CaMKK and
its two major downstream targets CaMKI and CaMKIV (Soder-
ling, 1999; Means, 2000). CaMKII regulates numerous neuronal

functions, including phosphorylation of the AMPA-type gluta-
mate receptor (GluR), resulting in increased conductance during
early-phase LTP (E-LTP) (Soderling and Derkach, 2000; Song
and Huganir, 2002). CaMKIV is primarily restricted to the nu-
cleus (Jensen et al., 1991; Lemrow et al., 2004), in which it stim-
ulates gene transcription required for late-phase LTP (L-LTP)
(Kang et al., 2001) through phosphorylation of transcription fac-
tors such as CREB (cAMP response element-binding protein)
and CBP (CREB binding protein) (Enslen et al., 1994; Impey et
al., 2002). Cytosolic CaMKI modulates cytoskeletal organization
(Suizu et al., 2002) and axonal growth cone motility (Wayman et
al., 2004), but a potential role for CaMKI in LTP has not been
examined previously.

The ERK family of MAP (mitogen-activated protein) kinases
are activated by growth factors, neurotransmitters, and hor-
mones, as well as by Ca 2�-permeable NMDA receptor
(NMDA-R) and voltage-gated channels in neurons (Pearson et
al., 2001; Thomas and Huganir, 2004). The NMDA-R gates many
forms of synaptic plasticity, including hippocampal CA1 LTP
(Malenka and Nicoll, 1999). Activation of ERK during neuronal
depolarization or NMDA-R stimulation requires elevations of
intracellular Ca 2�, and it appears to be mediated through the
classical Ras/Raf/MEK (MAP kinase kinase)/ERK cascade (Wu et
al., 2001a,b; Agell et al., 2002). Recent studies suggest that Ras-
GRF1 (Ras-guanyl-nucleotide releasing factor) may couple the
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NMDA-R Ca 2� elevation to Ras and ERK activation in neurons
(Krapivinsky et al., 2003; Tian et al., 2004).

Induction of LTP activates ERK, and inhibitors of the ERK
pathway (e.g., SL327 and U0126) partially suppress LTP induc-
tion (Sweatt, 2004; Thomas and Huganir, 2004). A role for ERK
in the regulation of gene transcription during L-LTP is well es-
tablished (Treisman, 1996; Kelleher et al., 2004), and a role of
ERK in mRNA translation has been reported recently (Kelleher et
al., 2004). Expression of dominant-negative (dn) MEK1 in region
CA1 of the hippocampus suppresses hippocampal-dependent
memory tasks in mice, ERK activation, and anisomysin-sensitive
LTP in hippocampal slices, as well as mRNA translation in cul-
tured hippocampal neurons.

Because of the key role of ERKs in modulating Ca 2�-
dependent neuronal plasticity, it was important to determine
whether the recently identified crosstalk between CaMKK/
CaMKI and ERK (Schmitt et al., 2004) regulate LTP. The results
of this study provide strong evidence that CaMKK and CaMKI
are essential for the full expression of LTP and ERK-dependent
translational activation.

Materials and Methods
Antibodies and plasmids. The following reagents were purchased from the
indicated sources: U0126 and forskolin from Calbiochem (Riverside,
CA); STO-609, NMDA, and APV from Tocris Cookson (Ellisville, MO);
and anisomycin from Alexis Biochemicals (San Diego, CA). Phospho-
specific antibodies were purchased from the following sources: ERK1/2
(Thr 202, Tyr 204), Ras-GRF1 (Ser 916), eIF4E (eukaryotic initiation factor
4) (Ser 209), 4E-BP1 (eukaryotic initiation factor 4E-binding protein 1)
(Ser 65), and AKT (Thr 308) from Cell Signaling Technology (Beverly,
MA); CaMKII (Thr 286) and GluR1 subunit of the AMPA-R (Ser 831)
from Affinity BioReagents (Golden, CO); and CaMKI (Thr 177) from Dr.
Naohito Nozaki (Kanagawa Dental College, Yokosuka, Kanagawa, Ja-
pan) (Schmitt et al., 2004; Wayman et al., 2004). Other antibodies were
purchased from the indicated sources: AKT, Ras-GRF1, eIF4E, and 4E-
BP1 from Cell Signaling Technology; ERK2 (D-2) from Santa Cruz Bio-
technology (Santa Cruz, CA); CaMKII from Transduction Laboratories
(Lexington, KY); CaMKI from Dr. Kohji Fukunaga (Tohoku University,
Sendai, Japan); and Flag (M2) from Sigma (St. Louis, MO). The
dnCaMKK (K71A, T108A, S458A), dnCaMKI (K49E, T177A,
7IHQS286EDDD, F307A), dnCaMKIV nuclear (T196A, K71E,
HMDT305DEDD), and CaMKIIN plasmids have been described previously
(Schmitt et al., 2004; Wayman et al., 2004). The Flag-ERK2 plasmid was
provided by Dr. Philip Stork (Vollum Institute, Portland, OR). The Ras-
GRF1 construct was purchased from Open Biosystems (Huntsville, AL).

Primary hippocampal neuronal culture and treatments. Neurons were
isolated from the hippocampus of postnatal day 1–2 Sprague Dawley
rats. Neurons were grown 5– 6 d in vitro (DIV) (unless otherwise indi-
cated) and placed in serum-free isotonic media consisting of 130 mM

NaCl, 2.5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 25 mM HEPES-HCl, and 30
mM D-glucose for 60 min at 37°C with pharmacological inhibitors (5 �M

STO-609 for 60 min; 10 �M U0126 for 20 min), as indicated before
stimulation. Cells were stimulated with serum- and magnesium-free iso-
tonic media containing NMDA (25 �M) and glycine (1 �M) for the indi-
cated times.

For transfections, 5-d-old hippocampal neurons were cotransfected
with Flag-ERK2, along with the control vector pcDNA3, or the indicated
plasmids using Lipofectamine 2000 (Invitrogen, San Diego, CA) accord-
ing to the guidelines of the manufacturer. After transfection, neurons
were allowed to recover in complete media for 24 h, placed in serum-free
isotonic media for 60 min (see above), treated as indicated, and lysed in
ice-cold lysis buffer as detailed below. Lysates were then examined for the
presence of Flag-ERK2 or myc-Ras-GRF1 (Open Biosystems) expression
by Western blotting, and Flag-ERK2 or myc-Ras-GRF1 were immuno-
precipitated and examined by Western blotting for activation.

Western blotting and immunoprecipitation of primary hippocampal
neurons. For direct Western blotting after primary hippocampal neuron

stimulations, media was aspirated, and boiling Laemmeli’s buffer (sup-
plemented with 200 mM EDTA, 20 mM EGTA, 200 mM NaF, 20 mM

�-glycerophosphate, 1 mM PMSF, and 5 �M microcystin) was added to
each plate of cells. Plates were scraped, and cellular lysates were placed in
microcentrifuge tubes, rapidly vortexed, boiled for 5 min, and centri-
fuged at 8000 rpm for 3 min to pellet insoluble materials. Equivalent
amounts of protein were resolved by SDS-PAGE, blotted onto polyvi-
nylidene difluoride membranes (PVDF), and examined by Western blot-
ting with the indicated antibodies.

For immunoprecipitations after primary hippocampal neuron stimu-
lations, media was aspirated, and ice-cold lysis buffer (10% glycerol, 1%
NP-40, 50 mM Tris-HCl, pH 7.4, 200 mM NaCl, and 2 mM MgCl2) con-
taining freshly added inhibitors (1 mM PMSF, 2 �g/ml aprotinin, 1 �g/ml
leupeptin, 10 �g/ml trypsin inhibitor, and 1 mM sodium orthovanadate)
was added to each plate of cells on ice. Plates were scraped, and cellular
proteins were placed in ice-cold microcentrifuge tubes. Briefly, cell ly-
sates were spun at 8000 rpm for 5 min at 4°C to pellet the cytoskeleton
and nuclei. Immunoprecipitations were performed at 4°C for 4 h in
ice-cold lysis buffer (Schmitt et al., 2004). Precipitated proteins were
washed two times with lysis buffer, placed in Laemmeli’s buffer, resolved
by SDS-PAGE, and Western blotted for phosphorylated Flag-ERK2
(pFlag-ERK2, pFlag-ERK2, or myc-Ras-GRF1). Western blotting for to-
tal Flag-ERK2 with anti-Flag antibody was performed on lysates to serve
as a loading and transfection control. For quantitation of Western blots,
autoradiographs were scanned and densitized using Kodak ID 3.0.2 sys-
tem software (Eastman Kodak, New Haven, CT). For each phospho-
protein of interest, separate Western blots were run for that phospho-
protein (e.g., pCaMKI) and for the total protein (CaMKI). For each
Western blot, band densities were first normalized to untreated controls,
then phospho-protein was normalized to total protein, and the value was
presented as fold increase in phosphorylation relative to the control.

Mouse hippocampal slice production and treatments. Adult male
C57BL/6 mice (8 –12 weeks old; Charles River Laboratories, Wilming-
ton, MA) were anesthetized with pentobarbital (60 mg/kg, i.p.) and de-
capitated using procedures reviewed and approved by Institutional An-
imal Care and Use Committee at the Oregon Health and Sciences
University Department of Comparative Medicine. Brains were removed
within 1 min of decapitation and immediately submerged in ice-cold,
sucrose-modified artificial CSF (ACSF) for hippocampal dissection and
slicing (in mM): 110 sucrose, 60 NaCl, 2.5 KCl, 28 NaHCO3, 1.25
NaH3PO4, 0.5 CaCl2, 7 MgCl2, 5 glucose, and 0.6 sodium ascorbate, pH
7.4, at 4°C (presaturated by bubbling with 95% O2/5% CO2 at 21–22°C).
Hippocampal slices (400 �m, transverse) were prepared using a vi-
bratome and an agar backing (2%), and each slice was transferred to
warm ACSF [in mM: 125 NaCl, 2.5 KCl, 22.6 NaHCO3, 1.25 NaH3PO4, 2
CaCl2, 1 MgCl2, and 11.1 glucose (continuously gas saturated with 95%
O2/5% CO2, pH 7.4 at 32°C)] for recovery (30 min, 37°C). Slices from the
dorsal and ventral thirds of the hippocampus were discarded. After re-
covery, the chamber was equilibrated at 21–22°C, and slices were held for
2– 8 h before recording or 1 h before beginning NMDA and forskolin
treatments. For NMDA and forskolin treatments, slices were then placed
at 30°C for 1 additional hour, in the presence or absence of pharmaco-
logical inhibitors (5 �M ST0 – 609 for 60 min, 10 �M U0126 for 20 min,
and 50 �M APV for 20 min), before chemical stimulations. Hippocampal
slices were then stimulated with NMDA plus glycine (25 and 1 �M, re-
spectively) or forskolin (50 �M) for the indicated times in ACSF, in the
presence or absence of STO-609 or U0126. After chemical stimulation,
and at various time points after the electrical induction of LTP, slices
were frozen on a filter paper-covered liquid nitrogen-cooled aluminum
block and placed in microcentrifuge tubes in pairs. Slices were kept sub-
merged at all times until frozen. For LTP experiments, area CA1 was
isolated by microdissection after freezing. Ice-cold lysis buffer (10% glyc-
erol, 1% NP-40, 50 mM Tris-HCl, pH 7.4, 200 mM NaCl, and 2 mM

MgCl2) plus freshly added inhibitors (1 mM PMSF, 2 �g/ml aprotinin, 5
�M microcystin, 1 �g/ml leupeptin, 10 �g/ml trypsin inhibitor, and 1 mM

sodium orthovanadate) was added to each tube containing frozen slices,
which were rapidly homogenized as they thawed in lysis buffer. Laem-
meli’s buffer (6�) was then added, and tubes were rapidly vortexed and
boiled for 5 min. Equivalent volumes of lysate were resolved by SDS-



PAGE, blotted onto PVDF membranes, and examined by Western blot-
ting with the indicated antibodies.

Electrophysiology. For electrophysiological recordings, submerged hip-
pocampal slices were suspended in pairs on a nylon mesh in a small
(350 – 400 �l) recording chamber and perfused with ACSF at a rate of
2.5–3 ml/min. The temperature in the recording chamber was raised to
30 –32°C over the course of a few minutes and held for the duration of the
experiment. Synaptic responses were evoked by Schaffer collateral stim-
ulation using a bipolar tungsten electrode (tip spacing, 140 �m; Freder-
ick Haer Company, Bowdoinham, ME) and a 100 �s square wave test
pulse (typically 30 – 40 �A) delivered at 60 s intervals. The stimulation
intensity was adjusted to produce a basal response of 1.2–1.4 mV [typi-
cally 25% of the maximum field EPSP (fEPSP) amplitude]. Recordings
were made using ACSF-filled glass micropipettes (2– 4 M�) placed in the
stratum radiatum area of CA1 (see Fig. 2C) and connected via head stages
to an A-M Systems (Carlsborg, WA) model 1800 amplifier. Signals were
digitized at 100 kHz using the Axon Instruments (Union City, CA) Digi-
data 1200 series interface running Clampex 8.0, and the initial slope
(linear portion of the first millisecond) of the fEPSPs were analyzed with
Clampfit 8.0 software. Drug treatments began 30 min (STO-609, U0126,
and anisomycin) or 20 min (APV) before and ended (with the exception
of anisomycin) 5 min after the induction of LTP using theta bursts.
Anisomycin treatments persisted for the duration of the recordings.
E-LTP was induced using an acute theta-burst protocol: four pulses per
burst (100 Hz), five bursts per train (5 Hz), three trains (beginning 20 s
apart). L-LTP was induced using a recurrent theta-burst protocol: four
epochs of the acute theta-burst protocol delivered 5 min apart. With the
exception of the first data point after LTP induction (posttetanic poten-
tiation), 3 min fEPSP averages are shown. The first data point after LTP
induction was taken 20 s after the final train of theta bursts. All treatment
groups were balanced such that the average time of the slices in the
recording chamber was equal and the average age of animals was equal.

Statistics. To determine whether significant differences existed among
treatments, an ANOVA was performed on the data with significance set
at 0.05. To compare whether significant differences existed between two
treatments, a Student’s t test was performed on the data with significance
set at 0.05. Significance levels ( p value) are indicated in the figures: *p �
0.05, **p � 0.01, and ***p � 0.001.

Results
NMDA activation of ERK requires CaMKK and CaMKI
To investigate the potential role of CaMKs in NMDA-dependent
ERK activation in hippocampal neurons, we used the membrane-
permeable CaMKK inhibitor STO-609 (Tokumitsu et al., 2002)
or expression of dnCaMKs or the CaMKII inhibitor protein
CaMKIIN (Chang et al., 1998). STO-609 appears to be highly
specific for CaMKK: (1) it has an in vitro IC50 of 0.13– 0.38 �M for
CaMKK and 32 �M for CaMKII with little or no inhibition of
CaMKI, CaMKIV, PKA (protein kinase A), PKC, ERK, or myosin
light chain kinase (Tokumitsu et al., 2002); and (2) in cultured
hippocampal neurons (Wayman et al., 2004) and NG108 cells
(Schmitt et al., 2004) subjected to depolarization, STO-609 in-
hibits CaMKK activation, as assessed by its ability to block phos-
phorylation of the activation loop Thr 177 in CaMKI, with no
effect on CaMKII activation (i.e., autophosphorylation of
Thr 286). Furthermore, we used dnCaMKs as an independent
confirmation of the involvement of this pathway. CaMKIIN is an
endogenous CaMKII inhibitor protein (IC50 of 50 –100 nM) that
exhibits no in vitro inhibition of CaMKI, CaMKIV, CaMKK,
PKA, PKC (Chang et al., 1998), or ERK (S. Nygaard and T. R.
Soderling, unpublished result). When transfected into cultured
hippocampal neurons, CaMKIIN potently blocks CaMKII acti-
vation (Wayman et al., 2004) but not ERK activation (Schmitt et
al., 2004) during depolarization.

Stimulation of cultured hippocampal neurons with NMDA
activated endogenous ERK within 5 min, an effect that was com-

pletely blocked by either the MEK inhibitor U0126 or by STO-
609 (Fig. 1A), indicating involvement of the CaMKK cascade. To
confirm the specificity of STO-609, we used a mutant (L233F) of
CaMKK (Tokumitsu et al., 2002) that is insensitive to inhibition
by this compound. Transfection of neurons with CaMKKL233F

completely rescued inhibition by STO-609 (Fig. 1A), establishing
that STO-609 was exerting its effect through CaMKK. To further
characterize which member of the CaMKK cascade mediated
ERK activation, hippocampal neurons were cotransfected with
Flag-ERK2 plus various dominant-negative CaMK constructs.
ERK activation was completely inhibited by dnCaMKK, as well as
by dnCaMKI (Fig. 1B). Endogenous CaMKIV is predominantly
nuclear restricted (Lemrow et al., 2004), and nuclear-localized
(nuc) dnCaMKIVnuc did not block ERK activation (Fig. 1B),
although we have shown previously that it suppressed NMDA-
stimulated CREB-dependent transcription in neurons (Wayman
et al., 2004). To examine the role of CaMKII, we expressed the
specific CaMKII inhibitor protein CaMKIIN (Chang et al., 1998)
that completely blocked neuronal CaMKII activation in response
to depolarization (Wayman et al., 2004). CaMKIIN had no effect
on NMDA-dependent ERK activation (Fig. 1B). These results
demonstrate in cultured hippocampal neurons that NMDA-
dependent activation of ERK was mediated by the CaMKK and
CaMKI pathway but not by CaMKII or nuclear CaMKIV.

Next, we examined the role of CaMKK in ERK activation
using acute mouse hippocampal slices. The rapid activation of
ERK in response to NMDA treatment was blocked by the NMDA
receptor antagonist APV, the MEK inhibitor U0126, and the
CaMKK inhibitor STO-609 (Fig. 1C,D). CaMKK and CaMKI
were also rapidly activated by NMDA as assessed by phosphory-
lation of the activation loop Thr 177 in CaMKI (a target of
CaMKK), and, as expected, these were also inhibited by STO-609
but not U0126 (Fig. 1E). In agreement with previous studies
(Fukunaga et al., 1992), CaMKII was also activated (i.e., auto-
phosphorylation of Thr 286) by NMDA stimulation, and one of its
substrates, Ser 831, in the GluR1 subunit of the AMPA-R was
phosphorylated (Barria et al., 1997), but neither of these reac-
tions was inhibited by STO-609 or U0126 (Fig. 1F). This result
confirms our previous observation that STO-609 does not block
CaMKII activation in hippocampal neurons (Wayman et al.,
2004) or NG108 cells (Schmitt et al., 2004). The specificity of
STO-609 for CaMKK was further demonstrated by the fact that
activation of ERK in response to forskolin treatment, which was
NMDA-receptor independent (Fig. 1C), was not blocked by
STO-609 but was suppressed by U0126 (Fig. 1G).

We have shown previously a requirement for the small
G-protein Ras in the CaMKK/CaMKI activation of ERK during
depolarization (Schmitt et al., 2004). Ras is required for NMDA
receptor-dependent activation of ERK in neurons (Zhu et al.,
2002), and the dnRas RasN17 blocked ERK activation in response
to NMDA treatment of cultured hippocampal neurons in our
experiments (data not shown). Furthermore, recent studies dem-
onstrate the involvement of the Ca 2�-dependent Ras activator
Ras-GRF1 in ERK activation (Krapivinsky et al., 2003; Tian et al.,
2004). Phosphorylation of Ras-GRF1 at Ser 916 appears to play a
pivotal role in its physiological functions and serves as a readout
for activation (Mattingly, 1999; Yang et al., 2003). Endogenous
Ras-GRF1 was rapidly phosphorylated on Ser 916 in response to
NMDA treatment, an effect that was blocked by STO-609 but not
U0126 (Fig. 1H). To confirm the roles for CaMKK and CaMKI in
Ras-GRF1 phosphorylation, cultured hippocampal neurons were
cotransfected with myc-Ras-GRF1 plus dnCaMKI or CaMKIIN.
Ras-GRF1 phosphorylation was completely suppressed by



dnCaMKI but not by the CaMKII inhibi-
tor (Fig. 1 I). Together, the data of Figure 1
support the specificity of STO-609 for
CaMKK and suggest that the require-
ment for CaMKK/CaMKI in NMDA-
dependent ERK activation in hippocam-
pal neurons is upstream of Ras-GRF1.

Induction of LTP requires the
CaMKK pathway
The CaMKK cascade can mediate NMDA
receptor-dependent ERK activation (Fig.
1) and ERK plays an important role in LTP
induction (Sweatt, 2004; Thomas and Hu-
ganir, 2004), so we investigated the role of
CaMKK in LTP induction. Mouse hip-
pocampal slices treated with STO-609 ex-
hibited a normal input–output relationship
over a wide range of stimulus intensities
(Fig. 2A), as well as normal paired-pulse fa-
cilitation (Fig. 2B), indicating that acute
blockade of the CaMKK pathway does not
effect basal synaptic transmission. Addition-
ally, we integrated the area above the curve
of the fEPSPs during stimulation with theta-
burst trains (E-LTP protocol, see Materials
and Methods) and found no significant
difference among the dendritic field re-
sponses of STO-609- or U0126-treated
and untreated slices during E-LTP induc-
tion (Fig. 2C). This finding held true for
the first (naive) theta bust, each individual
train, the plasticity within each train (area
of burst 5/burst 1), as well as the sum of all
trains. These results indicate that STO-609
does not impair normal synaptic trans-
mission nor the dendritic field response to
high-frequency theta-burst trains, impor-
tant prerequisites for our study of the role
of CaMKK in LTP.

To determine whether CaMKK and its
downstream targets are involved in the in-
duction of early-phase LTP (E-LTP), we
treated acute hippocampal slices with 5
�M STO-609. Analysis of the initial slope
of fEPSPs taken from area CA1 (Fig. 2C)
before and after theta-burst stimulation
(see Materials and Methods) revealed a
significant (�50%) STO-609 sensitivity of
E-LTP out to 60 min (Fig. 2D). Our acute
theta-burst protocol produced activation
of CaMKI and ERK within 5 min, effects
that were completely blocked by the
NMDA receptor antagonist APV, as was
the induction of E-LTP (Fig. 2E).

The role of CaMKK in L-LTP lasting
3 h was examined using a recurrent theta-
burst protocol spaced over 15 min (see
Materials and Methods). Again, STO-609 treatment gave �50%
suppression over the first hour and completely obviated LTP at
3 h (Fig. 2F), demonstrating that the requirement for CaMKK in the
first hour of LTP was not overcome by a more robust induction
protocol. Although CaMKIV is also activated by CaMKK, it does not

participate in E-LTP induced with either high-frequency stimula-
tion (HFS) or recurrent theta bursts in mouse hippocampal region
CA1 but is thought to contribute to CREB/CBP-dependent tran-
scription during L-LTP (Ho et al., 2000; Kang et al., 2001). Based on
these observations, we conclude that CaMKI mediated the down-

Figure 1. NMDA activation of ERK and Ras-GRF1 in hippocampus requires CaMKK and CaMKI. Primary cultures of rat hippocam-
pal neurons (A, B, I, 6 DIV) or acute mouse hippocampal slices (C–H, 8 –12 weeks old) were preincubated with the indicated
pharmacological reagents [STO-609 (STO), 5 �M, 60 min; U0126, 10 �M, 20 min; APV, 50 �M, 20 min] before stimulation by
NMDA/glycine (25 and 1 �M, respectively) or forskolin (Fsk; 50 �M) for 5 min. A, B, I, Cultured rat hippocampal neurons (5 DIV)
were cotransfected with Flag-ERK2 and either CaMKKL233F (L233F, a STO-609-insensitive mutant; A, bottom graph) or myc-Ras-
GRF1 plus control vector pcDNA3 or the indicated dnCaMKs or CaMKIIN as indicated. Cells were stimulated with NMDA, and
Flag-ERK2 or myc-Ras-GRF1 phosphorylation was determined (see Materials and Methods). In all experiments, the activation
states of the indicated proteins were determined by Western blots using phospho-specific antibodies (see Materials and Methods).
The ratio of the phospho-protein to total amount of that same protein was set equal to 1 for the control, and relative values for
treatments are shown as fold stimulation over basal. Means � SD; n � 6 ( A), n � 3 ( B), n � 5 ( D–H), or n � 6 ( I ). *p � 0.05;
**p � 0.01; ***p � 0.001. C, Control.



stream effects of CaMKK during E-LTP, whereas CaMKIV may con-
tribute significantly to L-LTP.

CaMKK mediates ERK activation in E-LTP
Induction of E-LTP in hippocampal slices activates ERK, and this
activation is required for full expression of LTP (Selcher et al.,

2003). In light of our findings that CaMKI
functions upstream of ERK activation, we
examined whether the effects of STO-609
on LTP occurred upstream of ERK. In-
duction of LTP with our acute theta-burst
protocol (see Materials and Methods)
(Fig. 2D,E) resulted in threefold to four-
fold activation of CaMKI and ERK within
5 min that was sustained for at least 60 min
(Fig. 3A,B). Both CaMKI and ERK activa-
tion were suppressed by STO-609 at all
time points examined. Another cytoplas-
mic target for CaMKK is the protein ki-
nase AKT, which is slowly phosphorylated
during depolarization of NG108 cells
(Yano et al., 1998; Schmitt et al., 2004). A
dnAKT (Yano et al., 1998) did not block
ERK activation by NMDA treatment of
cultured hippocampal neurons (data not
shown) or during depolarization of
NG108 cells (Schmitt et al., 2004). Induc-
tion of LTP in hippocampal slices pro-
duced a slow phosphorylation of AKT that
was blocked by STO-609 (Fig. 3B). ERK
was maximally activated within 5 min af-
ter LTP induction, whereas robust AKT
activation was not observed until after 15
min (Fig. 3B). Therefore, we propose that
CaMKK was not acting through AKT to
activate ERK or to mediate LTP induction.
However, endogenous Ras-GRF1 was sig-
nificantly phosphorylated within 5 min,
and this was obviated by STO-609 treat-
ment (Fig. 3C). LTP induction also re-
sulted in rapid activation of CaMKII and
phosphorylation of its substrate Ser 831 in
the GluR1 subunit of the AMPA-R (Barria
et al., 1997), but these effects were not sup-
pressed by STO-609 (Fig. 3D). This con-
firms that STO-609 does not suppress
other Ca 2�-dependent pathways, such as
CaMKII. These data support our conclu-
sion that ERK activation during LTP is
mediated by CaMKK acting through
CaMKI.

CaMKK and ERK mediate E-LTP by the
same pathway
As reported previously (Selcher et al.,
2003), the MEK inhibitor U0126 pro-
duced a partial suppression of E-LTP elic-
ited with theta bursts (Fig. 4A). The same
drug application and acute theta-burst
protocol was used here as in Figure 2, D
and E. The inhibition of E-LTP by U0126
(Fig. 4A) was strikingly similar to that
produced by STO-609 (Fig. 2D), consis-

tent with the data in Figure 3 demonstrating that ERK activation
during LTP is mediated by CaMKK. If this model is correct and
the role of CaMKK in LTP induction is upstream of ERK, then the
effect of U0126 should be occluded by STO-609 and visa versa. As
shown in Figure 4B, combined bath treatment with U0126 plus
STO-609 was no more effective at blocking E-LTP than treatment

Figure 2. Inhibition of CaMKK markedly attenuates NMDA receptor-dependent LTP. A, STO-609 does not affect basal synaptic
transmission. Input– output relationship for Schaffer collateral stimulation and fEPSP initial slopes recorded from area CA1 of
mouse hippocampal slices preincubated without or with 5 �M STO-609 (STO) for 30 min. Inset, 0 –20 �A; n � 8. B, Paired-pulse
facilitation is normal during STO-609 treatment. Paired-pulse facilitation at 10, 50, and 200 ms interpulse intervals. Values
presented are ratios of fEPSP initial slopes (pulse 2/pulse 1). n � 8. C, Left, Schematic drawing of electrode placements during
recording and E-LTP induction paradigm (see Materials and Methods). DG, Dentate gyrus; S, stratum radiatum. Middle, Represen-
tative first burst responses from mock-treated (control) and treated (STO) slices. Calibration: 0.5 mV, 10 ms. Right, Integrated
dendritic theta-burst responses of control slices and treated slices: n � 24, control; n � 11, STO-609; n � 10, U0126; n � 10,
U0126 plus STO-609 UO/STO. The theta-burst responses were calculated by integrating the fEPSP response during stimulation of
naive slices with our E-LTP-generating protocol. D, E, Inhibition of CaMKK partially inhibits NMDA receptor-dependent E-LTP. After
20 min of stable baseline recording (1 test pulse per minute min), slices were treated for 30 min without or with 5 �M STO-609 for
30 min ( D) or with 50 �M APV for 20 min ( E) before and 5 min after theta-burst stimulation [4 pulses per burst (100 Hz), 5 bursts
per train (5 Hz), 3 trains (20 s apart)]. STO-609 had no significant effect on baseline fEPSP amplitude or initial slope kinetics. Control
slices (LTP, 144 � 5.4%; n � 24) exhibited approximately twofold greater LTP than STO-treated slices (LTP, 120 � 5.9%; n � 11)
at 60 min, whereas APV treatment (n � 8) completely blocked LTP. D, Inset, Average of 10 responses, 1–10 min before ( a) and
50 – 60 min after ( b) LTP induction. E, Inset, Western blots from microdissected region CA1 showing pCaMKI and pERK 5 min after
mock stimulation (control) or theta-burst stimulation without or with APV treatment. F, Inhibition of CaMKK blocks L-LTP.
Slices were treated without or with STO-609 as in D before stimulation with recurrent theta-burst patterned activity [4
pulses per burst (100 Hz), 5 bursts per train (5 Hz), 6 trains (20 s apart), 4 epochs (5 min apart)] to generate late-phase LTP.
Control, n � 6; STO-609, n � 6. CTL, Control.



with STO-609 alone. In these experi-
ments, U0126 completely blocked ERK
activation at both 5 and 60 min (Fig. 4C).
The specificity of U0126 was confirmed in
that it did not inhibit activation of CaMKI,
AKT, CaMKII, or Ras-GRF1 (Fig. 4D).
These data demonstrate that the role of
CaMKK in E-LTP is mediated by an ERK-
dependent mechanism.

Role of CaMKK in translational
activation during LTP
A recent study (Kelleher et al., 2004)
shows that protein synthesis-dependent
L-LTP induced by four trains of HFS is
partially suppressed in mice expressing a
dominant-negative MEK1 (the upstream
activator of ERK) in region CA1. In fact,
the degree and kinetics of L-LTP suppres-
sion in the dnMEK1 mice was equivalent
to suppression of L-LTP in wild-type mice
by the mRNA translation inhibitor aniso-
mycin. These authors did not observe any
decrement in E-LTP induced by two trains
of HFS in the dnMEK1 mice, but the dec-
rement of L-LTP (induced by four trains
of HFS) developed within minutes in both
dnMEK1 and anisomycin-treated mice.
This is consistent with our results because
E-LTP induced by two trains of HFS in
mouse is not sensitive to the MEK inhibi-
tors U0126 or SL327 (Selcher et al., 2003).
Therefore, we tested whether E-LTP in-
duced with our acute theta-burst protocol
was dependent on protein synthesis using
anisomycin. Not only did anisomycin
produce a partial suppression of this
E-LTP, but also both the magnitude and
kinetics of E-LTP blockade with anisomy-
cin (Fig. 5A) were nearly identical to those
of U0126 (Fig. 5B) and STO-609 (Fig. 5C),
indicating that the CaMKK/ERK pathway
in E-LTP may exert its effects primarily
through a translation-dependent mecha-
nism. Furthermore, anisomycin treat-
ment did not significantly affect the den-
dritic field responses (area under the
curve) during theta-bursts (data not
shown), as was the case with STO-609 and
U0126 (Fig. 2C). Our observation that
E-LTP generated by theta-burst stimula-
tion are equally sensitive to STO-609 (Fig.
2D) and anisomycin (Fig. 5A) suggest that
protein synthesis during theta-burst
E-LTP is regulated by CaMKK and is re-
quired for concurrent CaMKK-dependent
LTP expression. Indeed, treatment of
slices with STO-609 was able to occlude
further inhibition of E-LTP by U0126
(Fig. 5D).

Regulation of general mRNA transla-
tion by ERK during LTP may be related to
phosphorylation of several translation fac-

Figure 4. CaMKK and ERK mediate E-LTP via a common mechanism. A, B, Mouse hippocampal slices were treated without or
with the MEK inhibitor U0126 (UO; 10 �M) and/or the CaMKK inhibitor STO-609 (STO; 5 �M) by bath application as in Figure 2 D for
30 min before and 5 min after E-LTP induction. Control (CTL), n � 24; U0126, n � 10; STO-609, n � 11; U0126 plus STO-609, n �
10. C, D, At various times after E-LTP induction (as in Fig. 2 D), the activation status of ERK ( C) and CaMKI, AKT, CaMKII, and
Ras-GRF1 ( D) was determined at the indicated times. Mean � SE; n � 5. **p � 0.01.

Figure 3. LTP-activation of CaMKI, Ras-GRF1, and ERK requires CaMKK. Mouse hippocampal slices were preincubated without
or with STO-609 (STO; 5 �M, 30 min) and subjected to theta-burst stimulation as in Figure 2 D. The activation states, assessed by
phospho-specific antibodies (see Fig. 1), of ERK1/2, CaMKI, and AKT (A, B); Ras-GRF1 ( C); and CaMKII and the GluR1 subunit of the
AMPA-type glutamate receptor (a CaMKII substrate) ( D) were determined at the indicated times. Mean � SE; n � 6. *p � 0.05;
**p � 0.01. C, Control.



tors, including eIF4E and its inhibitory binding protein 4E-BP1
(Kelleher et al., 2004). Induction of LTP with our acute theta-
burst protocol produced a rapid (5 min) and sustained (60 min)
phosphorylation of eIF4E and 4E-BP1 (Fig. 6A–D), both of
which required CaMKK activity because STO-609, when present
during LTP induction, was inhibitory at all time points exam-
ined. U0126 completely blocked phosphorylation of eIF4E and

4E-BP1 (Fig. 6D), highlighting the impor-
tance of eIF4E and 4E-BP1 in translation-
dependent LTP. We conclude that regula-
tory eIF4E and 4E-BP1 phosphorylations
are mediated by the CaMKK/ERK path-
way in NMDA receptor-dependent theta-
burst LTP.

Discussion
Ca 2� signaling and protein phosphoryla-
tion play essential roles in regulating the
multiple mechanisms that produce hip-
pocampal CA1 LTP, and recent studies
have focused on the roles of CaMKII
(Soderling et al., 2001; Lisman et al.,
2002), CaMKIV (Kang et al., 2001; Kasa-
hara et al., 2001), and ERK (Morozov et
al., 2003; Selcher et al., 2003; Kelleher et
al., 2004). Although ERK activation dur-
ing LTP induction is Ca 2� dependent, the
mechanisms responsible for this are un-
clear (Thomas and Huganir, 2004). Using
cultured hippocampal neurons and acute
slices, we reveal a robust Ca 2�-mediated
activation of CaMKI by CaMKK that is
required for both the activation of ERK
and the full expression of NMDA-
receptor dependent LTP. Additionally,
our study suggests that CaMKK mediates
mRNA translation, as measured by regu-
latory phosphorylation of several transla-
tion initiation factors, via ERK during
LTP. Together, our data demonstrate that
CaMKK and CaMKI are required for ERK
activation, regulatory phosphorylation of
two limiting general translation factors,
and E-LTP at the Schaeffer– collateral CA1
synapse.

A role for CaMKI in E-LTP
Previous studies have examined the role of
the CaMKK cascade in LTP, focusing on
the role of CaMKIV in CREB/CBP-
mediated gene transcription. LTP induc-
tion does result in activation of CaMKIV
(Kasahara et al., 2001), but, because
CaMKIV is predominantly nuclear, it is
unlikely to play a major role in cytoplas-
mic ERK activation. Indeed, nuclear-
localized dominant-negative CaMKIV has
no effect on ERK activation in NG108 cells
(Schmitt et al., 2004) or cultured hip-
pocampal neurons (Fig. 1B). Further-
more, Ca 2�-dependent ERK activation in
dnCaMKIV-expressing (Kang et al., 2001)
and CaMKIV knock-out mice (Ho et al.,
2000) was normal. Moreover, expression

of dnCaMKIV in region CA1 of hippocampus does not inhibit
E-LTP induced with theta burst (Kang et al., 2001), nor does
knocking out the CaMKIV gene inhibit E-LTP induced by HFS
(Ho et al., 2000). These findings support the conclusion that
CaMKI, but not CaMKIV or AKT, mediates the CaMKK-
dependent portion of LTP induction and E-LTP.

Figure 5. Inhibitors of CaMKK and MEK suppress LTP by a translation-dependent pathway. A, Mouse hippocampal slices were
treated by bath application with the translation inhibitor anisomycin (Aniso; 40 �M) 30 min before and for the duration of
recording after E-LTP (as in Fig. 2 D). n � 8. Note that the magnitude and kinetics of anisomycin suppression of LTP are identical
to those of U0126 (UO; B) and STO-609 (STO; C) and are occluded by STO-609 ( D). CTL, Control.

Figure 6. Translation factor activation in E-LTP requires CaMKK and ERK. Mouse hippocampal slices were preincubated with the
indicated pharmacological reagents (see Fig. 1) and then subjected to E-LTP induction (as in Fig. 2 D). The activation state of
translation factors eIF4E and its inhibitory binding protein 4E-BP1 were determined using phospho-specific antibodies against
their respective activation sites. Mean � SE; n � 6 ( B) or n � 5 ( D). STO, STO-609; U0, U0126; C, Control. *p � 0.05; **p � 0.01.



Although LTP induced with theta bursts was sensitive to
U0126 or STO-609, it was not completely inhibited during the
first hour (�50% inhibition) (Fig. 2E,F). This observation is
consistent with the well established role in LTP of CaMKII to
phosphorylate the AMPA receptor subunit GluR1, thereby en-
hancing its conductance (Derkach et al., 1999). This mechanism
is thought to mediate �50% of the change in synaptic efficacy
that occurs during E-LTP (Benke et al., 1998; Poncer et al., 2002).
We found that neither the activation of CaMKII nor the phos-
phorylation of GluR1 at Ser 831 were affected by STO-609 during
LTP, demonstrating both the specificity of STO-609 and that
CaMKK and ERK effects were independent of CaMKII actions.
We interpret these findings as evidence that the CaMKK/ERK
and CaMKII pathways mediate E-LTP by distinct mechanisms.
However, STO-609 did completely suppress L-LTP after �2 h,
consistent with a dual role for CaMKK in regulation of CaMKI
(E-LTP) and CaMKIV (L-LTP). This is consistent with the report
that a mouse lacking the � isoform of CaMKK, which is thought
to be predominantly nuclear and to regulate CaMKIV, showed
no deficit in E-LTP but lacked L-LTP (Peters et al., 2003)

CaMKI has been shown previously to promote hippocampal
axon outgrowth and growth cone dynamics (Wayman et al.,
2004), structural components of plasticity. In this study, we find
that CaMKI is robustly activated by CaMKK after induction of
E-LTP with theta bursts. This stimulation of the CaMKK/CaMKI
pathway was required for ERK activation, providing a compelling
mechanism for Ca 2�-mediated ERK activation during LTP. Ac-
cordingly, the effects of pharmacological inhibition of CaMKK
and ERK (with STO-609 and U0126, respectively) on E-LTP are
mutually occlusive, indicating that these kinases share the same
pathway. We chose theta burst rather than HFS to induce E-LTP
because it has been shown in mice that U0126 does not block
E-LTP resulting from HFS (two trains of 100 Hz) but is partially
inhibited using theta-burst induction (Selcher et al., 2003). How-
ever, we should point out that we used lower stimulation inten-
sity, as well as older animals, than used by Selcher et al. to dem-
onstrate a role for ERK in temporal integration during LTP
induction. These differences may help explain why inhibition of
the ERK pathway did not significantly reduce the integrated field
responses during E-LTP induction in our study. It is interesting
that induction of LTP by both of our theta-burst protocols was
partially suppressed by STO-609 (Fig. 2F) and induction of
L-LTP by HFS (4 trains of 100 Hz, 5 min apart) was partially
suppressed by anisomysin (Kelleher et al., 2004), even during the
E-LTP phase (first 60 min). These results suggest that the
CaMKK, ERK, and protein synthesis-dependent processes can
affect LTP within minutes depending on the induction protocol.

In addition to CaMKII-mediated phosphorylation of
AMPA-Rs to enhance conductivity (Derkach et al., 1999), re-
cruitment of additional AMPA-Rs to synapses is thought to be a
second major postsynaptic mechanism of E-LTP expression at
the CA1 synapse (Malinow and Malenka, 2002). One possible
explanation for the rapid deficit of LTP after STO-609, U0126, or
anisomycin treatment could be that synaptic delivery of AMPA
receptors may be coupled to translation. Indeed, it has been
shown that the Ras/ERK pathway is required for this rapid traf-
ficking of AMPA-Rs (Zhu et al., 2002). AMPA-R trafficking is
also dependent on CaMK activity, with current evidence sup-
porting a role for CaMKII (Poncer et al., 2002). However, because
recent work indicates that CaMKII probably has either an inhib-
itory effect on ERK (Oh et al., 2004) or no effect (Krapivinsky et
al., 2004), we propose that the requirement for a CaMK in

AMPA-R trafficking may be attributable to CaMKK/CaMKI ac-
tivation of ERK.

ERK regulation in synaptic plasticity
A role for ERK1/2 in NMDA receptor-dependent hippocampal
LTP is well established (Sweatt, 2004; Thomas and Huganir,
2004), and a number of mechanisms for how Ca 2� may activate
ERK have been proposed, including roles for Pyk2 and Src,
CalDAG-GEFs (calcium- and diacylglycerol-regulated guanine
nucleotide exchange factors), EGF (epidermal growth factor) re-
ceptor transactivation, and Ras-GRF1/2. The data presented here
demonstrate that NMDA receptor-dependent ERK activation
during E-LTP requires CaMKK acting through CaMKI. Other
components of NMDA receptor-dependent ERK activation in-
clude Ras (Thomas and Huganir, 2004) and its activator Ras-
GRF1 that directly interacts with the NMDA-receptor and is re-
quired for ERK activation (Krapivinsky et al., 2003; Tian et al.,
2004). Ras-GRF is regulated through phosphorylation of Ser 916

by several kinases, including PKA and CaMKII, and this phos-
phorylation is required for full activation of Ras and for neurite
outgrowth (Mattingly, 1999; Baouz et al., 2001; Yang et al., 2003).
We find that Ser 916 is rapidly phosphorylated in response to
NMDA treatment and theta-burst stimulation in a CaMKK-
dependent manner. It should be noted that Ras-GRF1 contains
multiple phosphorylation sites (Baouz et al., 2001), and activa-
tion appears complex and may be regulated by the binding of
cofactor(s) such as CaM and/or by its subcellular localization
(Buchsbaum et al., 1996; Arozarena et al., 2004). In this context,
Ras-GRF1 is a very poor in vitro substrate for activated CaMKI
relative to PKA (T. Saneyoshi, unpublished observation). The
precise mechanism for CaMKK-mediated activation of the Ras
pathway remains an area of investigative interest.

Regulation of translational activation by CaMKK and ERK
ERK activation has been implicated in regulating multiple aspects
of LTP, including gene transcription (Thomas and Huganir,
2004), AMPA-R trafficking (Zhu et al., 2002), dendritic excitabil-
ity (Morozov et al., 2003), and translation factor phosphorylation
(Kelleher et al., 2004). The data presented here are consistent with
a role of ERK in regulation of mRNA translation via phosphory-
lation of both eIF4E and 4E-BP1 (Fig. 6). Phosphorylation of
4E-BP1 frees up additional eIF4E, a limiting translation factor,
and phosphorylation of eIF4E enhances its functionality (Raught
et al., 2000). Moreover, the partial inhibition of E-LTP by the
protein synthesis inhibitor anisomycin was identical to inhibition
by U0126 and STO-609 and occluded by STO-609, implying that
CaMKK and ERK regulate E-LTP by a translation-dependent
mechanism.

There are several reports documenting inhibition of NMDA
receptor-dependent LTP by anisomycin and other translation
inhibitors during the early phase in hippocampus and amygdala
(Huang et al., 2000; Kelleher et al., 2004). The partial inhibition of
E-LTP by anisomycin in our acute theta-burst protocol was very
rapid (Fig. 5), but it should be noted that translation of a typical
50 kDa protein, at a rate of seven amino acids per second, would
only require �1 min. Indeed, a significant increase in dendritic
CaMKII, attributable to localized synthesis, was observed within
5 min of LTP induction (Ouyang et al., 1999). Additionally, ani-
somycin was present for 30 min before LTP induction, and, al-
though it had little effect on basal synaptic transmission, it could
suppress basal synthesis of some component necessary for the
rapid insertion or modulation of AMPA-Rs during induction
(Malinow and Malenka, 2002). Alternatively, it is possible that



translation and postsynaptic exocytosis are coupled through the
secretory pathway and that inhibiting one process may affect the
other. Furthermore, it is now recognized that protein synthesis
from mRNAs localized within dendrites and even dendritic
spines is essential for synaptic plasticity, so the possibility that
protein synthesis may have acute regulatory effects has to be con-
sidered. CaMKK, CaMKI (Wayman et al., 2004), ERK (Wu et al.,
2001b), and eIF4E (Asaki et al., 2003; Smart et al., 2003) are all
localized in dendrites, as is the mRNA for the GluR1 subunit of
the AMPA-R (Job and Eberwine, 2001). Thus, it will be impor-
tant to determine whether the CaMKK/CaMKI pathway regu-
lates a pool of ERK that in turn stimulates AMPA-R synthesis
and/or trafficking to synapses.
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