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Since its discovery in the 1960s, the cyclic nucleotide
cyclic adenosine monophosphate (cAMP) and its
principal target, the cAMP-dependent protein kinase
(PKA), have been intimately involved in studies of
hormone action in the metabolic pathways of the
mammalian cell. Over the years, a growing
appreciation of their role in cell growth and
proliferation has also emerged [1]. That cAMP is
important is undisputed. Yet how it functions is the
subject of repeated speculation: this remarkable
regulator seems to both activate and inhibit cell
proliferation, and much research has been dedicated
to determining what sort of mechanisms could foster
such opposite effects.

One target of cAMP that is associated with cell
proliferation is the mitogen-activated protein (MAP)
kinase – also called extracellular signal-regulated
kinase, or ERK – cascade. cAMP regulation of the
ERK cascade provides important crosstalk between
hormones and growth factor signaling. Significantly,
ERK can be activated or inhibited by cAMP, in a cell-
specific manner, to dictate the growth effects of cAMP
(see Figs 1 and 2). ERK signaling couples growth
factors to cell proliferation through the GTPase Ras.
Active Ras binds to and activates the MAP kinase
kinase kinase (MAPKKK), Raf-1. Activated Raf-1
phosphorylates and activates the MAPKK, MEK,

which in turn phosphorylates and activates ERK.
cAMP activates another GTPase of the Ras
superfamily, Rap1, whose effects on ERKs seem to
parallel those of cAMP. Recent reports suggesting
that cAMP and Rap1 act independently of PKA have
further complicated the picture of how cAMP might
regulate ERKs.

Thus, in this review we examine the multiple
pathways that have been proposed for cAMP to either
inhibit or activate ERK signaling pathways. We also
address the roles of Ras, Rap1 and PKA in cAMP
signaling. We demonstrate that cAMP uses a variety
of pathways to inhibit ERKs and that these mechanisms
share common features including a dependence on
PKA and the inhibition of Ras-dependent signals to
Raf-1. We discuss additional mechanisms by which
cAMP activates ERKs that involve the activation of
either Ras or Rap1, as well as both PKA-dependent
and -independent pathways.

The inhibition of cell proliferation by cAMP

It has long been appreciated that cAMP can inhibit
cell growth by blocking growth factor activation of
ERKs. The antiproliferative actions of hormones,
cAMP and PKA have been linked to inhibition of the
ERK kinase cascade in many cell types. Examples are
provided in Table 1.

Hormones increase intracellular cAMP levels
through G-protein-coupled receptors (GPCRs) that
link hormones to the heterotrimeric G protein Gαs.
Constitutively activated mutants of Gαs can block
Ras-dependent proliferation of NIH3T3 fibroblasts,
suggesting that hormones coupled to Gαs proteins
inhibit cell growth by inhibiting ERKs (see Table 1).
cAMP has recently been shown to activate multiple
intracellular signaling cascades independently of its
activation of PKA [2]. However, most studies examining
cAMP inhibition of ERKs show a requirement for
PKA (see Table 1). Various mechanisms whereby
cAMP can inhibit ERK activity and cell proliferation
are described in the following sections.

cAMP inhibition of cell proliferation: ERK-independent
mechanisms
In cells where ERK activation is required for cell
proliferation, the finding that cAMP inhibits ERKs
has often suggested that cAMP inhibition of 
ERKs mediates the antiproliferative effects of cAMP.
However, cAMP can inhibit cell proliferation without
inhibiting ERKs [3,4] or while activating ERKs [5].
Consistent with these studies, genetic ablation of the
gene for Raf-1 does not effect proliferation or ERK
activation in embryonic fibroblast cells although
further development is blocked, due to an increase in
apoptosis [6]. In addition, it is important to point 
out the risk of overinterpreting experiments that
show cAMP inhibition of ERKs at selected times.
Examination of single time points showing complete
inhibition might miss more subtle effects. For
example, in studies using CCL39 fibroblast cells,
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cAMP-dependent protein kinase PKA regulates cell growth by multiple

mechanisms. A hallmark of cAMP is its ability to stimulate cell growth in many
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type-specific effects of cAMP on the mitogen-activated protein (MAP) kinase
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proliferation are examined. Two basic themes are discussed. First, the capacity

of cAMP for either positive or negative regulation of the ERK cascade accounts
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there are several specific mechanisms involved in the inhibition or activation of

ERKs by cAMP. Emerging new data suggest that one of these mechanisms

might involve the activation of the GTPase Rap1, which can activate or inhibit

ERK signaling in a cell-specific manner.



McKenzie and Pouyssegur noted that growth factor
activation of ERKs cells is not inhibited by cAMP but
instead is delayed [3]. In vascular smooth muscle
cells, cAMP has been reported to inhibit either early
or late ERK activation, depending on the stimuli [7].
In one study, cAMP was able to block early activation
while enhancing late activation of ERKs [8].
Similarly, c-jun N-terminal kinase (JNK) activation is
not blocked by cAMP but is delayed [9]. For this
reason, we have included detailed information of ERK
time points in Tables 1 and 2.

cAMP inhibition of cell-cycle progression
Many mechanisms have been proposed to explain the
antiproliferative effects of cAMP, increasing cell-cycle
inhibitor proteins p21cip1 [10] or p27kip1 [7,11,12], as
well as decreasing the levels of cyclin D1 [12]
and cyclin D3 [11,13]. p27kip1 mediates the
cAMP-dependent block in G1 in some cells [14].
Paradoxically, cAMP-dependent increases in p27kip1

protein levels have been reported in thyroid cells,
where cAMP stimulates proliferation [15], consistent
with a positive function for this protein [16,17]. 
Other growth-inhibiting effects of cAMP include the
stimulation of apoptosis [18–21] and the stimulation
of differentiation [22]. In thyroid cells, where cAMP
stimulates proliferation, the onset of S phase is
delayed, and cAMP levels must be reduced to allow

propagation [23]. Therefore, it is likely that cAMP
exerts growth inhibitory signals that coexist with
proliferative signals in some cells.

cAMP inhibition of ERKs through PKA and Rap1
Landmark molecular and biochemical studies by
Krebs [24], Sturgill [25], Bos [26], McCormick [27]
and colleagues demonstrated that the target of cAMP
action is downstream of Ras and upstream of Raf-1.
The inhibition of Ras-dependent signals by cAMP
requires PKA [28].

PKA can block Ras-dependent signals to ERKs by
blocking Raf-1 activation [27], and PKA
phosphorylation seems to inhibit Raf-1 activity
directly [29]. For example, phosphorylation of
serine 621 inhibits Raf-1 kinase domains but might
be required to activate full-length Raf-1 through
interaction with the protein 14-3-3 [86]. Other PKA
sites have also been proposed as negative regulators
(see Fig. 3). Phosphorylation of serine 259 by either
PKA [30] or Akt [31] is inhibitory, and mutation of this
site to alanine results in constitutive membrane
association [30,32]. Previous studies proposed that
phosphorylation of serine 43 on Raf-1 by PKA inhibits
Raf-1 in fibroblasts by preventing Raf-1 from binding
to Ras [25]. Yet mutagenesis of this site failed to block
PKA from inhibiting ERKs in both the fibroblast cell
line NIH3T3 and the human embryonic kidney cell
line Hek293 [33]. Additional mechanisms might
therefore account for the ability of PKA to uncouple
Raf-1 from Ras.

One possible mechanism involves Rap1. This
GTPase was first identified as an antagonist of Ras-
induced cell transformation in NIH3T3 cells [34], and
as an inhibitor of ERKs in Rat-1 fibroblasts [35]. Rap1
is activated by PKA [36] and is therefore a potential
mediator of the inhibition of Ras-dependent signaling
to ERKs by cAMP (see Fig. 2a). Interestingly,
although Rap1 can block signals from constitutively
activated Ras, it cannot block signals from
constitutively active Raf-1 [35]. Thus, like cAMP, the
actions of Rap1 manifest themselves upstream of
Raf-1 and downstream of Ras [26]. Activated, GTP-
loaded Rap1 antagonizes Ras activation of Raf-1 and
ERKs by binding to and sequestering Raf-1 away
from Ras – an action that is triggered by PKA [37].
The requirement for Rap1 in cAMP inhibitory effects
on both ERKs and cell growth has been demonstrated
recently in NIH3T3 cells (see Fig. 2a) [37]. Although
no studies examining activation of endogenous Rap1
by extracellular stimuli have shown an inhibition
of endogenous Raf-1 kinase activity directly (see Ref.
[38] and references therein), it has been shown that
the activation of endogenous Rap1 does block Ras
binding to Raf-1 [37].

Regulation of Rap1 and ERKs by PKA activation of 

Src kinase

The activation of Rap1 by PKA has been demonstrated
in a wide variety of cells [39], including neurons
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Fig. 1. cAMP regulation of extracellular signal-regulated kinases (ERKs)
and cell proliferation. Stimulation of cells with growth factors results in
activation of ERK. ERK can stimulate either proliferation or
differentiation depending on the stimulus and cell type. Hormonal
stimulation of cells can activate Gαs and adenylyl cyclases to stimulate
the production of cAMP. cAMP activates the cAMP-dependent protein
kinase, PKA. In some cells, PKA activation inhibits growth factor-
dependent activation of ERKs (minus sign). In other cells, PKA
activation stimulates ERKs (plus sign).



[40,41], glia [42] and fibroblasts [37,43]. Although
Rap1 can be phosphorylated directly by PKA [44], 
this phosphorylation step is not required for the
activation of Rap1 by cAMP[36]. It is possible that
phosphorylation of Rap1 by PKA plays a role in
influencing effector pathways of Rap1 that are
distinct from Raf-1, as suggested by Altschuler 
and coworkers who have recently identified a 
function for this phosphorylation in thyroid cell
proliferation [45]. Additional evidence suggests that
the activation of Rap1 by PKA is indirect [46] and
upstream guanine nucleotide exchange factors
(GEFs) might be involved.

One GEF, C3G [Crk Src homology domain 3 (SH3)
guanine nucleotide exchange factor], specifically
activates Rap1 [47], and is a potential target of the
effects of PKA. For example, expression of an
interfering mutant of C3G blocks the activation of
Rap1 by PKA in fibroblasts [43,46]. PKA recruits C3G
to the plasma membrane in a complex with the
adaptor Crk-L and the scaffold protein Cbl. C3G 
and Crk-L are recruited to Cbl following the
phosphorylation of a specific tyrosine residue on Cbl
that serves as a docking site for the SH2 domain of
Crk-L [46]. This tyrosine phosphorylation of Cbl
requires Src [46], and PKA activates Src by
phosphorylating serine 17 directly [1] to induce the
formation of the Cbl/Crk-L/C3G complex.
Phosphorylation of Src at serine 17 is required for
PKA to activate Rap1, and to inhibit ERKs and cell
growth in both NIH3T3 cells and mouse embryonic
fibroblasts [46]. The requirement of PKA for Src to
inhibit ERKs identifies a novel antiproliferative
function for Src, one that is distinct from the well-
studied proliferative actions of this proto-oncogene. It
is likely that Src activation by PKA, like that of Rap1,
will display cell-specific actions on ERK signaling.

Rap1 activation can regulate intracellular signals
independently of ERKs
Stimuli that activate Rap1 are not always associated
with regulation of ERK signaling [48] and non-Ras
pathways have been proposed [49–52]. Many recent
studies point to a positive role for C3G [53] and Rap1
in cell adhesion [38] in a variety of cell types including
macrophages [50] and lymphocytes [52,54,55]. In
many studies, the regulation of ERKs by Rap1 was
ruled out [52,56], while one study supported a role for
ERK inhibition in Rap1 actions [57]. Increased cell
adhesion by Rap1 can promote proliferation indirectly
[52]. Therefore, it is possible that cAMP might also
regulate Rap1-dependent integrin pathways to
regulate proliferation in selected situations.

cAMP uses multiple mechanisms to inhibit ERKs
The activation of Rap1 by PKA disrupts Ras/Raf-1
signaling in multiple cell types. However, other
mechanisms by which PKA inhibits ERKs have been
proposed (Fig. 3). Interestingly, many of these
mechanisms identify additional targets of PKA
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Fig. 2. A model showing how Rap1 activation by cAMP might regulate
extracellular signal-regulated kinases (ERKs) in a cell type-specific
manner. (a) Rap1 activation by cAMP inhibits ERKs. Hormonal
stimulation of a Gαs/cAMP/PKA module leads to Rap1 activation 
(GTP loading). Many cells express Raf-1 as the major Raf isoform. 
In these cells, GTP-loaded Rap1 blocks Ras activation of Raf-1, thereby
inhibiting growth factor activation of ERKs and cell proliferation. 
(b) Some cells express B-Raf as well as Raf-1. In these cells, 
GTP-loaded Rap1 can activate B-Raf and the mitogen-activated 
protein (MAP) kinase cascade and hormonal stimulation of
cAMP/PKA/Rap1 in these cells activates ERKs. Rap1 might also
antagonize Ras activation of Raf-1, as in (a). Rap1 activation of 
B-Raf often predominates over the inhibition of Raf-1, resulting in a net
effect of ERK activation.



that, like Rap1, directly or indirectly inhibit
Ras-dependent activation of Raf-1. For example,
activation of ERKs by growth factors is blunted in
nonadherent cells, and a role for PKA in this block has
been demonstrated [58]. This block might be achieved
through an inhibitory phosphorylation of the
p21-associated kinase (PAK) [58] by PKA, which
might be required for Raf-1 to be fully activated by
Ras [59]. However, recent studies question the
physiological significance of PAK in these actions [60].

Other kinase targets for PKA have also been
proposed. Recent studies have identified Akt 
(also termed protein kinase B, or PKB) as a potent
negative regulator of Raf-1 [31]. This action has 
been identified primarily in myoblast cells [61], as
well as in the breast cancer cell line MCF-7 [31].

Rap1 might activate Akt by activating the
phosphoinositol-3 kinase (PI3-K) [62]. Direct
phosphorylation of Akt by PKA has also been

suggested [63]. However, cAMP does not activate 
PKB in all cells, and in some cells it inhibits PKB
activation by growth factors [64]. Either mechanism
of activation of Akt by cAMP might limit activation of
Raf-1 and ERKs (see Fig. 3). Finally, the serum- 
and glucocorticoid-inducible kinase, SGK, also
inhibits Raf kinase signaling [65], and can be
activated by cAMP and PKA [66]. Therefore, 
SGK might also mediate inhibitory signals from
cAMP/PKA to Raf kinases.

ERKs can be inhibited by the family of dual
specificity MAP kinases phosphatases (MKPs), which
can be transcriptionally activated by cAMP [67,68].
This induction by cAMP limits the activation of ERK
in selected systems [68–70] and might be one of
several mechanisms that could account for the
delayed inhibition of ERKs following cAMP treatment
that occurs in a time frame compatible with
transcriptional regulation.

TRENDS in Cell Biology Vol.12 No.6 June 2002 261Opinion

Table 1. Examples of the inhibition of ERKs and proliferation by cAMPa

Cell type Stimulus of ERK timepoints Stimulus of cAMP PKA Refs

proliferation

Adipocytes Insulin 5 min Glucagon, isoproterenol, forskolin, cAMP Yes [28]
Endothelial cells VEGF, FGF 5, 10, 15 min Isoproterenol, cAMP Yes [113]
NIH 3T3 cells EGF, PDGF 1, 3, 5, 10, 20, 30, Isoproterenol, Gαs, forskolin, PGE1 Yes [37,45,114]

60 min
Rat-1 fibroblasts EGF 5 min Forskolin, cAMP Yes [25,27]
Smooth muscle PDGF, thrombin, 5, 10, 15, 20, 30, Forskolin, cAMP, phosphodiesterase inhibitors Yes [115,116]
cells EGF 60, 90 min

Hepatocytes EGF 2.5, 5, 10, 20, 30, Glucagon, cAMP ND [117]
60 min

Pancreatic acinar CCK, EGF 3, 30 min Forskolin, cAMP ND [118]
cells (AR42J)

Bone cells (MG63) Serum 10 min Parathyroid hormone No [125]

acAMP inhibition of ERKs and proliferation in a variety of cell types, together with the method of elevating ERK/proliferation and the method of
raising cAMP levels. The requirement of PKA for these effects is indicated when known.
Abbreviations: CCK, cholecystokinin; EGF, epidermal growth factor; FGF, fibroblast growth factor; ND, not determined; PDGF, platelet-derived
growth factor; PKA, protein kinase A; VEGF, vascular endothelial growth factor.

Table 2. Examples of the activation of ERKs by cAMPa

Cell type Stimulus of cAMP ERK timepoints Effect PKA Refs

Rat thyroid cells TSH 3, 10, 15, 30, 60 min P No [82]
(FRTL-5)

Bone cells (ATDC5, Parathyroid hormone 1, 2, 5, 10, 15, 30 min P No [125]
MC4)

Polycystic kidney Forskolin, cAMP, secretin, VIP, vasopressin, 5, 15, 30, 60, 120 min P Yes [119]
epithelium PGE2

Human prostate Epinephrine, forskolin 5, 10, 20 min P, D Yes [77]
tumor cells (LnCaP)

Sertoli cells FSH 5, 15, 30, 60 min and 1, 2, 4, P, D Yes [92]
6, 8 hrs

Cardiac myocytes Isoproterenol 8 and 10 min D Yes [120]
Granulosa cells LH, FSH, forskolin, cAMP 5, 10, 20, 60 min D Yes [121]
Pre-adipocytes Catecholamine, forskolin, cAMP, isoproterenol 0.5, 1, 2, 5, 10, 20, 30, 60 min D Yes [122,123]
Pituitary VIP, PACAP38, forskolin, cAMP 5, 10, 20, 30, 60, 120 min D Yes [78,124]
(GH4C1/GH3 cells)

PC12 cells Adenosine, norepinephrine, forskolin, cAMP 5, 10, 15, 30, 60, 90, 120 min D Yes [8,41]

acAMP activation of ERKs in a variety of cell types, together with the method of elevating cAMP levels, and the effect of that elevation
(proliferation, differentiation, or both). The requirement of PKA for these effects is indicated when known.
Abbreviations: D, differentiation; FSH, follicle-stimulating hormone; LH, leuteinizing hormone; P, proliferation; PGE2, prostaglandin E2; 
PKA, protein kinase A; TSH, thyroid-stimulating hormone; VIP, vasoactive intestinal peptide.



The stimulation of cell proliferation and differentiation

by cAMP

cAMP does not only inhibit cell proliferation, it can
also stimulate cell proliferation by stimulating ERKs
in diverse cell types. In all known examples,
cAMP-mediated cell proliferation is induced by
hormonal activation of GPCRs that are coupled to 
Gαs (see Table 2).

When cAMP activates ERK, it can stimulate cell
differentiation as well as proliferation [22,41].
Interestingly, the ERK cascade can mediate both
proliferation and differentiation within the 
same cell. This has been well documented in the
pheochromocytoma cell line PC12, where transient
activation of ERKs by epidermal growth factor 
(EGF) triggers proliferation, whereas sustained
activation of ERKs by nerve growth factor and
fibroblast growth factor triggers differentiation
sympathetic-like neurons [47]. Moreover, in 
Schwann cells, low concentrations of cAMP activate
proliferation through ERK, whereas higher
concentrations of cAMP induce sustained activation
of ERKs, as well as markers of differentiation [71].
Similar dosage effects of cAMP have been seen in
kidney cells [72].

The ERK-dependence of cAMP-induced 
cellular differentiation has been well studied in
neuronal cells. However, the coupling of 
cAMP/PKA to ERKs in these cells might depend on
the development stage [73]. In neurons, neuronal
activity and depolarization induce changes in
synaptic plasticity that have been shown to require
both PKA and ERKs [40,74–76]. Neuroendocrine

differentiation of prostatic tumor cells by cAMP also
requires ERKs [77].

cAMP-mediated cell differentiation is characterized
by the induction of specific genes through
phosphorylation of the transcription factor CREB by
PKA. Although there is no known requirement for
ERKs in this phosphorylation of CREB, ERKs seem to
be required for cAMP transcriptional effects, possibly
through phosphorylation of a protein downstream of
CREB [74]. Additional examples of the requirement of
ERKs for the transcriptional effects of cAMP include
induction of the prolactin gene in pituitary cells [78],
and of the dopamine beta-hydroxylate gene in PC12
cells [79].

Mechanisms by which cAMP stimulates ERK signaling

Rap1 activation of B-Raf
Rap1 has another action in certain cell types – it can
activate the Raf isoform B-Raf. This action is
independent of Ras and provides a pathway for cAMP
to activate ERKs. Early studies in PC12 cells
determined that the target of the activation of ERKs
by cAMP was upstream of MEK [22]. The Ras
independence of the effects of cAMP was suggested by
studies examining the regulation of ERKs by
parathyroid hormone and cAMP in Chinese hamster
ovary cells [80] and by forskolin in PC12 cells [41]. A
role for Rap1 in cAMP activation of ERKs was first
demonstrated using interfering mutants of Rap1, and
it was confirmed later using a genetic approach [18].

For Rap1 to activate ERKs, the Raf isoform B-Raf
must be expressed. B-Raf is the major Raf isoform in
the brain [81], and is expressed in a wide variety of
cell types, including endocrine cells [78,82] and cells
of neural crest origin [41,83], as well as endothelial
cells [84], prostate cells [85] and selected fibroblasts
[37,43,57]. Low levels of B-Raf protein have also been
detected in kidney, lung, liver, heart and thymus [87].
In cells that do not express B-Raf, transfection of
B-Raf converts cAMP from an inhibitor to an
activator of ERKs [41,42].

B-Raf is highly homologous to Raf-1 within both
its kinase and Ras-binding domains, and, like Raf-1,
it has only one known substrate: the MAPKK, MEK.
Although both B-Raf and Raf-1 bind to Rap1, only
B-Raf is activated [41]. Studies in B-Raf-expressing
cells have shown that cAMP activation of ERKs
requires Rap1 and B-Raf [18,40,42,43], and a role for
the B-Raf binding partner 14-3-3 in Rap1 activation
of B-Raf by cAMP has been demonstrated [39].

cAMP activation of Rap1 does not always result in
B-Raf activation. For example, in a study in PC12
cells, cAMP did not activate B-Raf despite activating
Rap1 [88]. This is consistent with earlier studies [89],
but contrasts with others [39,41,42,90]. Full-length
B-Raf proteins seem to be regulated by cAMP
distinctly from shorter forms [91] and PC12 cells
differ in the expression of full-length and shorter
splice forms of B-Raf [41,89]. Therefore, it is possible
that these differences reflect clonal variation in PC12
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isolated kinase domains, but might potentiate the activity of full-length Raf-1 through 14-3-3 binding (4).



isolates of the expression of full-length and shorter
splice forms of B-Raf. The level of expression of 14-3-3
also seems to be a critical variable that might dictate
whether or not Rap1 activation by cAMP can activate
endogenous B-Raf proteins [39].

The contrasting actions of Rap1 on Raf-1 and B-Raf
provide an explanation for the cell type specificity of
cAMPregulation of ERKs. In this model, the
consequence of cAMPactivation of Rap1 depends on the
level of B-Raf expression (see Fig. 2). One important
area for future study is to determine whether changes
in B-Raf expression levels account for the reversal of
cAMPregulation of ERKs and cell growth seen in
certain developmental and pathophysiological systems.

A role for Src in PKA activation of ERKs through
Rap1/B-Raf
A pathway linking Src to PKA activation of Rap1 has
been demonstrated recently in B-Raf-negative cells
(see Fig. 3). It is likely that Src also mediates PKA
activation of Rap1 in B-Raf-positive cells (see Fig. 4),
providing a potential role for Src in the activation of
ERKs by PKA in these cells. Indeed, previous studies
have shown that ERK activation by PKA requires
members of the Src family [92–94]. It is possible that
these and other examples represent novel uses of the
PKA–Src–Rap1 pathway. However, at least one

additional mechanism of PKA activation of ERKs
through Rap1 and B-Raf has been identified in striatal
neurons, where Rap1 activation is primed through
PKA-induced calcium release [40]. The availability of
selective inhibitors of Src family kinases will allow the
requirement of Src in ERK regulation by cAMP to be
tested in these and other systems.

PKA-independent activation of Rap1 by cAMP
Although cAMP uses PKA to exert most of its effects,
cAMP might also have actions that are independent of
PKA, including the activation of Rap1. In thyroid
cells, Rap1 can be activated by cAMP by both PKA-
dependent and PKA-independent mechanisms
[62,95]. Studies in leukemic cells and kidney cells
have also identified a PKA-independent activation of
Rap1 [96–98]. These actions might be mediated by a
family of cAMP-binding proteins termed cAMP-GEFs
[99] or Epacs [100]. These proteins show increased
GEF activity towards Rap1 upon cAMP binding.

A recent paper has identified a role for Epac I in the
PKA-independent activation of ERKs and H,K-ATPase
regulation. In that study, roles for Epac I, Rap1 and
B-Raf were demonstrated using microinjection of
neutralizing antibodies [96]. However, for many studies,
there are no convenient molecular or pharmacological
tools to interfere with the function of endogenous
cAMP-GEFs, and their requirement has been inferred
in situations where cAMP activation of Rap1 or ERK
has been shown to be independent of PKA [2]. This
will certainly change as new tools become available.

PKA-independent actions of cAMP that regulate
cell growth have been identified in selected cell types
including thyroid cells and ovarian cells where cAMP
promotes proliferation [2]. In both cases, a role for
cAMP regulation of PI3-K, rather than ERKs, has
been proposed [2]. There are few examples of
PKA-independent action of cAMP to inhibit ERK
activation and cell growth [125]. It is possible that
this reflects the expression pattern of Epac proteins,
although our understanding of the role of Epacs in
cAMP-dependent growth control is likely to grow as
new systems are examined critically.

Alternatively, PKA might participate in directing
Rap1 function along specific effector pathways, as
suggested by recent studies [45]. For example, it is
interesting to speculate that PKA phosphorylation of
Src induces the assembly of a large protein complex
that includes Cbl, Crk and C3G that not only activates
Rap1 but also directs its actions towards Raf isoforms.

cAMP activation of ERKs can require Ras
Although early studies indicated that Ras is not
required in the activation of ERKs by PKA, it is now
clear that Ras participates in cAMP signaling under
certain circumstances. In selected neurons, cAMP
and PKA require Ras to activate ERK [101,102]. 
In thyroid cells, thyroid-stimulating hormone 
(TSH) stimulates Ras in thyroid cells using a cAMP-
dependent but PKA-independent mechanism [103].
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Although TSH uses a Ras-dependent pathway to
stimulate thyroid cell proliferation, ERK-independent
effectors of Ras have been postulated [104]. It is
possible that Rap1 activation by cAMP enhances Ras
binding to other effectors. Indeed, a model of cAMP
function in thyroid cells has been proposed in which
sequestration of Raf-1 by Rap1 redirects Ras signaling
to non-Raf-1 effectors, including PI3-K [105].

A Ras-dependence of cAMP signaling has been
revealed in other cells, such as melanocytes. In these
cells, cAMP activation of ERKs requires both Ras 
and B-Raf but does not require Rap1 or PKA [83].
Recently, a Ras-specific GEF, CnrasGEF, was
identified that, like other cAMP-GEFs, is activated 
by cAMP in a PKA-independent fashion [106]. This 
or related GEFs might play a role in the PKA-
independent activation of Ras by cAMP (see Fig. 4).

β-Adrenergic receptor uses multiple pathways to
activate ERKs
Classically, G-protein signaling to Ras uses signals
generated from the βγsubunits of the heterotrimeric
Gproteins [107]. However, a role for Gαs and PKAin Gβγ
signaling to Ras has been identified for the activation of
the β-adrenergic receptor by the agonist isoproterenol
[108]. This action of isoproterenol has been shown to
involve a PKA-dependent switch of the β-adrenergic
receptor coupling from Gαs to Gαi, and subsequent
activation of Ras through the βγsubunits of Gi [108].

Because agonist binding to GPCRs can activate
both Gαs and βγ, Gβγactivation of Ras might proceed
concurrently with Gα activation of Rap1. In Hek293
cells, isoproterenol can activate Rap1 with Gαs/cAMP,
and can activate Ras through βγ[43]. In COS-7 cells,
isoproterenol can inhibit ERKs through cAMP, but
can activate ERKs through βγand Ras [109]. The role
of Rap1 in cAMP inhibition of ERKs in these cells,
however, was not examined.

PKA can activate ERKs by additional mechanisms
Additional targets of PKA might potentiate ERK
signaling. PKA phosphorylation of a common kinase

interaction motif (KIM) within a family of ERK-
directed phosphotyrosine phosphatases (PTPases),
including HePTP [110], PTP-SL and STEP [111],
results in the release of bound ERK and subsequent
increase in ERK activity (see Fig. 4). Two other
mechanisms for activating ERKs by cAMP have been
described in neuronal cells. In neuronal hippocampal
cells, PKA activation of brain-derived neurotrophic
factor (BDNF) signaling contributes to cAMP
activation of ERKs [76]. In addition, PKA potentiates
the activation of ERKs through the GTPase Rheb
[112]. Rheb is expressed within hippocampal cells and
its ability to activate ERKs is potentiated by PKA
phosphorylation of Raf-1 [112].

Concluding remarks

Numerous distinct mechanisms exist that allow
cAMP to regulate ERK signaling. It will be critical to
determine whether any specific mechanism has
broad applicability to a variety of cell types or is
limited to selected cells and stimuli. Most
mechanisms explaining cAMP inhibition of ERKs
involve the uncoupling of Raf-1 from Ras activation,
either by direct actions of PKA on Raf-1 or through
the actions of PKA on the GTPase Rap1. Other
mechanisms, including the activation of selected
PTPases, might be limited to specific cell types.
Models to explain the activation of ERKs by cAMP
are more diverse, and include the involvement of
either Rap1 or Ras, and might include PKA-
independent actions of cAMP.

Although it is clear that distinct models operate in
cell types where cAMP either stimulates or inhibits
ERKs, one model, the activation of Rap1 by cAMP,
might be used in both cell types, either to stimulate or
to inhibit ERKs. This specificity can result from the
combined effects of the actions of Rap1 actions on both
Raf-1 and B-Raf (see Fig. 2). Because cAMP can
activate Rap1 in a variety of cells, it will be important
to assess the expression level of B-Raf when
evaluating the mechanism of action of cAMP in
specific cell types.
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