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Bone Morphogenetic Proteins: 
An Update on Basic Biology and Clinical Relevance 

*tJohn M. Schmitt, tKun Hwang, tShelley R.:Winn, and tJeffrey 0. Hollinger 

*Department of Cell and Developmental Biology and tNorthwest Wound Healing Center, 
Division of Plastic and Reconstructive Surgery) Oregon Health Sciences University, Portland, Oregon) US.A. 

Urist made the key discovery that demineralized 
bone fragments implanted either subcutaneously or 
intramuscularly in animals induce bone formation 
(100, 101 ). The hunt for the factors responsible for 
this effect has resulted in the identification of a fam
ily of bone morphogenetic proteins (BMPs) (115). 
BMPs play a crucial role in cell growth and differen
tiation in a variety of cell types including osteoblasts 
(49.83,84). BMPs trigger cellular effects by way of 
heterotetrameric serine/threonine kinase receptors 
and intracellular signaling proteins known as Smads 
(31,62). 

Evidence suggests BMPs and their receptors are 
required to promote bone regeneration following frac
ture (91). Shortly after a bone is fractured, BMP is re
leased from cells at the injury site ( 4). Difficulties wilh 
bone regeneration may be linked to abnormal or in
sufficient endogenous BMPs, their receptors, and other 
recognized clinical etiologies (91,115). An overwhelm
ing num bcr of preclinical studies have validated the 
ability of recombinant human BMPs (rhBMPs) to re
generate bone (18,20,22,63,121 ). Therefore, because 
BMPs will likely become conunonplace therapeutic 
agents for surgeons, it is timely to survey some of the 
recent exciting findings about the proteins, their recep
tors, signal transducers, and preclinical applications, as 
well as BMP-responsive genes. Moreover, by clearly 
defining current BMP biology, scientists and clinicians 
may collectively pursue the answers to questions that 
will benefit patients. 

Update: Review and Discussion 
of Current Knowledge 

Classification and Characterization 

BMPs are members of the transforming growth 
factor-~ (TGF-~) superfamily. Major subdivisions 
within the superfamily include the TGF-~s, BMPs (ex-
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eluding BMP-1 ), growth/differentiating factors 1-10 (a 
subclass of BMPs · [71 ]), inhibins, activins, V g-related 
genes, nodal-related genes, Drosophila genes (e.g., 
Drosophila decapentaplegic and Drosophila 60A), and 
glial-derived neurotropic factor (32,48,50,60,61 ,85). 

BMPs 1-9 were identified by the screening of hu
man cDNA libraries to derive recombinant clones 
that encoded human BMPs. BMP-1 is not part of the 
TGF-B family; it is a proteinase and a member of the 
tolloid-like proteins associated with the dorsoventral 
patterning of Drosophila embryos, the sea urchin blas
tula, Xenopus and mouse mcsoderm, and chick neural 
tube development. BMPs 2-9 are members of the 
TGF-P family on the basis of their similar amino-acid 
sequences (12-14,79,80,115). BMPs 10-13 have been 
identified by low-stringency hybridization and con
sensus polymerase chain reaction. 

Structural studies of BMPs reveal that they contain 
a mature domain that is cleaved, allowing monomeric 
units to become dimers by a cysteine-disulfide bridge. 
Following intracellular glycosylation, the dimer is ex
pressed in an active form. Protein assembly can pro
duce homodimers, heterodimers, and glycosylation 
variability, which may influence the activity and ef
fects of BMP (115). In addition, extracellular BMP 
antagonists regulate the biological effects of BMPs 
during bone formation (9). 

Studies in the Xenopus embryo and mice identified 
five protein regulators of BMPs called noggin, chor
din, gremlin, dan, and cerberus. These antagonist pro
teins bind to BMPs and thus govern cartilage and 
skeletal morphogenesis (9,40,123). 

Osteoblast Differentiation 

When bone is injured, such as by fracture, a local 
population of pluripotent progenitor cells is activated 
by growth/differentiating factors. The local cells are 
determined osteoprogenitors that reside in the cam
bial ]ayers of the periostcum, endosteum, and dura. 
Another class of cells, the inducible osteoprogenitor 
cells, such as pericytes, arrive at the injury locus ap
proximately 3-5 days after bone injury by transit in 
developing capillary sprouts (Fig.1) (7,77,78,97). Peri-
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FIG. 1. The 5-day sequence of events following bone fracture. After fracture, a hematoma develops, the immune system is activated, and 
debris is removed from the wound site. Between 3-5 days after fracture, new blood vessels begin to develop while osteoprogenitor and 
rnesenchymal stem cells localized at the wound site respond to environmental factors, including bone morphogenetic proteins (BMPs), 
to initiate bone restoration. bFGF = basic fibroblast growth faclor, and TGF-P = transforming growth factor-p . 

cytes may become osteoblasts following interactions 
with endogenous BMPs. According to Brighton and 
Hunt, a population of polymorphic mesenchymal cells 
can appear as early as 12 hours following fracture and 
become pre-osteoblasts (6). Moreover, mesenchymal 
stem cells within the bone marrow contribute to the 
repair blastema. These cells possess multilineage po
tential and can convert to either cartilage-forming 
chondrocytes or bone-forming osteoblasts, depending 
on the presence of environmental cues such as nu
trient supply, BMP concentrations, growth factors, 
blood vessels, and mechanical stability (8,10,82). For 
example, marrow-derived inducible osteoprogenitors 
undergo osteoblastic differentiation in response to 
BMPs and growth factors (Fig. 1) (1 ,44,57,86,88). The 
conversion of osteoprogenitor cells to mineralizing os
teoblasts is a key event for bone regeneration. BMPs 
are molecular cues for osteoprogenitor cells to differ-

Stem Cell 

entiate into osteoblasts (Fig. 2) (84,115). They also 
initiate bone formation in a sequential cascade on 
the basis of concentration-dependent thresholds (84) , 
and they bind specific surface receptors and initiate 
intracellular responses that result in a mineralizing 
osteoblast (54,71,91.119). Contemporary work has 
elucidated some of the intracellular signaling path
ways for BMPs and subsequent gene activation lead
ing to osteoblast differentiation. Additional efforts to 
understand the pathways that BMPs use to activate 
particular osteoblast genes will provide a scientific 
basis to develop rational clinical therapies. 

Receptors and Activation 

BMPs bind and initiate a cell signal through a trans
membrane receptor complex formed by types I and 
II serine/threonine kinase receptor proteins. Type-I 
(BMPR-IA or BMPR-IB) and type-II (BMPR-11) re-
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FIG. 2. Osteoprogenitor and mesenchymal stem cells at the fracture can respond to bone morphogenetic proteins (BMPs) 2, 4, and 7 and 
differentiate into ostcoblasts. Osteoblasts typically produce and secrete several proteins, including osteocalcin, osteopontin, and alkaline 
phosphatase, as well as bone matrix. 
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FIG. 3. Bone morphogenetic protein (BMP) receptor binding and intracellular signal transduction. BMPs bind types I and II serine/threo
nine kinase receptors to form a heterotetramer. Following binding, the type-II receptors phosphorylate the glycine/serine-rich domain of 
the type-I receptor. The type-I receptors phosphorylate the MH2 domain (Smad homology domain) of Smads 1, 5, and possibly 8. Smad6 
may block the phosphorylation cascade by binding the type-I receptor. After phosphorylation, Smads either bind to Smad4 and translocate 
to the nucleus or bind to Smad6 where the signal is stopped. Once inside the nucleus, Smads activate gene transcription. The Smad complex 
may directly or indirectly initiate transcription of the osteoblast-specific factor-2 (Osf2) gene (31). P =phosphorylation (phosphorylated 
or "activated" protein), BMPR-II =type-II bone morphogenetic protein receptor, and BMPR-JNB =type IA or lB bone morphogenetic 
protein receptor. 

ceptor proteins are distinguished on the basis of their 
molecular weights, the presence of a glycine/serine
rich domain located on the type-I receptor, and the 
ability to bind a particular ligand. Individual receptors 
have low affinity for BMPs; however, as a heterotetra
meric complex, high-affinity binding is achieved (Fig. 
3) (54,72,90). Evidence suggests that the type-II re
ceptors are active continuously (autophosphorylating) 
and function upstream of the type-I receptors but can
not independently initiate cell signals (116). On bind
ing BMPs 2, 4, and 7, the type-II receptor kinase 
transphosphorylates the type-I receptor at the gly
cine/serine-rich region; this event generates an in
tracellular response (Fig. 3) (62,116). Specificity in 
signaling appears to be determined primarily by the 
type-I receptor ( 11). 

Abnormalities Associated with 
BMPs and their Receptors 

Mice deficient in BMPs 2, 4, and 7 die at early 
embryonic stages or shortly after birth (25,58,113,122). 

Zhang and Bradley observed that animals lacking 
BMP-2 possessed a malformed amnion and chorion 
and had abnormal cardiac development (122). More
over, mesodermal differentiation was aberrant in mice 
lacking BMP-4 and no mesoderm developed in those 
lacking BMPR-IA (65,113). Furthermore, alterations 
in the kidney, eyes, rib, skull, and hindlimbs resulted 
when expression of BMP-7 was absent in mice (25). In 
addition to the developmental abnormalities discov
ered through mice knockout models, several skeletal 
disorders have been mapped to mutations in BMP 
genes. The mouse short-ear mutation, which maps to 
the BMP-5 gene, results in an abnormally shaped 
and sized external ear, as well as aberrations in the 
ribs and vertebral processes ( 49). Other mutations are 
associated with BMPs 2-4, suggesting roles for these 
morphogens in the pathological conditions known as 
fibrodysplasia ossificans progressiva (46,81) and den
tinogenesis imperfecta (96). Fibrodysplasia ossificans 
progressiva can be characterized by malformation of 
the great toes and ectopic bone formation (94), and 



dentinogenesis imperfecta is characterized by dental 
abnormalities (96). 

Intracellular BMP Signal Transduction 

Several intracellular proteins associating with re
ceptors of the TGF-~ family have been identified 
with yeast two-hybrid interactive screens. From these 
screens, the tryptophan and aspartic acid repeat pro
teins TRIP-1 (TGF-~-receptor interacting protein), 
the subunit farnesyl-protein transferase, and FKBP-12 
(an abundant immunophilin protein, capable of bind
ing the TGF-~ receptor) were observed interacting 
with the receptors (15,107,108). An important break
through in understanding how BMPs transmit intra
cellular responses came from genetic screening with 
Drosophila proteins. Data revealed enhanced expres
sion of the Drosophila decapentaplegic gene, a homo
log of vertebrate BMPs 2 and 4, by the gene product 
termed Mothers against Drosophila decapentaplegic 
(MAD) (93). MAD proteins are required for Dro
sophila decapentaplegic signaling and function down
stream of the Drosophila decapentaplegic receptor 
(38,69,110). Several homologs to MAD proteins (i.e., 
Smads) have been identified in Caenorhabditis ele
gans, Xenopus mice, and humans. The current verte
brate proteins related to MAD include MADRl/ 
Smadl, MADR2/Smad2, MADR3/Smad3, and Smads 
4-9. Drosophila MAD is 81 % identical to Smads l and 
5 and 70% identical to Smads 2 and 3 (2). 

Smad proteins interact with BMP receptors by an 
L3 motif and possess conserved N-terminal (MHl) 
and C-terminal (MH2) domains separated by less con
served threonine, serine, and proline linker regions 
(26,38,56,69,92,93). The various TGF-~-superfamily 
isoforms appear to signal through different Smad iso
forms (26,38,62). Human Smadl is activated and di
rectly phosphorylated on a serine residue by type-I 
BMP receptors (52). Following activation, Smad1 as
sociates with Smad4 as a hetero-oligomer, rapidly ac
cumulates in the nucleus of the cell, and may play a 
role in bone formation (Fig. 3) (38,53,55). Interest
ingly, overexpression of Smads 1 and 5 converts myo
blasts to osteoblasts independent of BMP activation 
(118). This may suggest a functional action for Smads 
that can be exploited as a clinical therapeutic device 
to promote osteoblast differentiation. 

Smad5 is activated by BMP-2 and associates with 
Smad4 (70). Recently, it was shown that Smad8 is 
structurally similar to Smads 1 and 5; however, its 
function has yet to be elucidated (109). The Smadl 
signaling pathway appears to be regulated by Smad6, 
which inhibits Smadl signaling through binding to 
the type-I receptor and by competing with Smad4 
for binding to receptor-activated Smadl. This pro
cess produces an inactive complex of Smads 1-6 (Fig. 
3) (30,42). The C-terminal domain (MH2) of Smadl 

is required to activate gene transcnpt10n (55). C
terminal binding of Smads to DNA and subsequent 
transcriptional activation has been demonstrated in 
Drosophila (47). 

Parallel pathways for the transduction of specific 
signals may exist. TGF-~-activated kinase 1 (a member 
of the mitogen-activated protein kinase kinase kinase 
family) has been shown to be activated by either TGF
~ or BMP-4 (117). In addition, Ras or Rae families 
of small GTP-binding proteins become activated by 
TGF-~ (29,66). These secondary message pathways 
may integrate with primary signal-transduction mech
anisms and functionally modulate cell activity. 

In the Osteoblast Nucleus 

It has been postulated that Smads may function as 
inducible transcriptional activators associated with a 
DNA binding component when they enter the os
teoblast nucleus (55). For example, Smad2 forms a 
complex with the DNA binding-component forkhead 
activin signal transducer-1 in an activin-depcndent 
fashion to generate an activated complex that binds to 
the activin-responsive gene element (16). Purportedly, 
once Smad2 interacts with forkhead activin signal 
transducer-] inside the nucleus, the complex directs 
transcription of the Mix.2 gene. We hypothesize that 
Smads 1, 5, and possibly 8 may bind nuclear elements 
or proteins and activate gene transcription (Fig. 3). An 
alternative hypothesis could be that phosphorylated 
Smads represent a novel class of transcription factors 
that directly bind DNA and activate transcription 
(38,47). 

We postulate that phosphorylated Smads may ac
tivate, directly or indirectly, the osteoblast-specific 
factor-2/core-binding factor-1 gene, which translates 
into the osteoblast-specific factor-2 protein. The gene 
encoding the osteoblast-specific factor-2 protein is 
closely related to transcriptional activators conserved 
between Drosophila and humans (74). The protein 
and its homologs possess a conserved runt domain 
with a Val-Trp-Arg-Pro-Tyr (VWRPY) motif within 
the C-terminal and an alpha subunit with a conserved 
128-amino-acid peptide region (43,45,74). The runt 
domain allows osteoblast-spccific factor-2 to become 
a heterodimer and bind DNA (73,74). The component 
that recognizes DNA binds to a sequence-specific 
gene-enhancer core motif, TGTGGT, found in viral 
and eukaryotic genes (64,95). Transcription factors 
(trans-acting) that bind to the gene core sequence 
have been termed core-binding factors. 

The osteoblast-specific factor-2 protein, which has 
recently been cloned, binds directly to and activates 
the osteocalcin transcriptional promoter region (23, 
24,27). The osteocalcin gene is a molecular marker 
found solely in osteoblasts, and its promoter contains 
three cis-acting elements capable of binding trans-
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FIG. 4. Osteocalcin gene regulation. Inside the osteoblast nucleus. the osteocalcin gene is controlled by the promoter region, binding 
several proteins that activate gene transcription. Osteoblast-spccific factor-2 (OSF2) binds the osteoblast-specific clcmcnt-2 (OSE2) by 
way of its runt domain. Following the binding by osteoblast-specific factor-2, the TATA (a nucleotide sequence with T [thymine nucleotide J 
and A [adenine nucleotide]) box binds the RNA polymerase II (Pol II) complex, which transcribes the osteocalcin genetic sequence into 
mRNA. The mRNA is translated into the osteocalcin protein on the ribosomes. Also shown within the osteocalcin promoter region are 
the genetic sequences mouse ostcocalcin E-box scqucnce-1 (mOSEl) and osteoblast-specific element-l(OSEl). 

acting factors (e.g., osteoblast-specific factor-2) (23, 
28,99). The three osteocalcin-gene control points have 
been designated ostcoblast-specific element-1, mouse 
osteocalcin E-box sequence-1, and osteoblast-specific 
element-2 (23). Geoffrey et al. have shown that the 
osteoblast-specific element-2 sequence is a transcrip
tional control point for the osteocalcin gene (Fig. 4) 
(27). Osteoblast-specific factor-2, a protein that is 
present only in osteoblastic cell lines and primary os
teoblasts, binds osteoblast-specific element-2 (23,27). 
Genetic sequence clements similar to the osteocalcin 
osteoblast-specific element-2 sequence have also been 
found in the promoters of al(I)collagen, bone sialo
protein. and osteopontin. 

BMP-treated cells express osteoblast-specific factor-
2 before expressing other osteoblast-specific genes 
(24 ). Furthermore, osteoblast-specific factor-2 can pro
mote osteoblast differentiation from nonosteoblas
tic cells (24). MC3T3-E1 cells transiently transfected 
with cDNA for osteoblast-specific factor-2 forced 
the expression of bone sialoprotein, osteocalcin, and 
al(I)collagen. In addition, transfection of C3Hl0Tl/2 
cells and mouse skin fibroblasts with this osteoblast
specific factor led to the expression of bone sialopro
tcin and osteocalcin. 

It was recently postulated that osteoblast-spccific 
factor-2 may trigger mcsenchymal stem cells to dif
ferentiate into osteoblasts during the developmental 
process (24.89)_ For example, mice deficient in this 
osteoblast-specific factor lacked ostcoblasts and bone, 
were smaller in size than those not deficient, and died 
due to respiratory failure (51,76). Osteoblast-specific 

factor-2-heterozygous ( ±) mice, however, exhibited 
skeletal abnormalities characteristic of the human her
itable skeletal disorder cleidocranial dysplasia (67,76). 

Osteoblast-specific factor-2 plays an important role 
in the formation of hone and is activated in response 
to exogenous BMPs, leading to the formation of os
teoblasts and the production of new hone. Further 
research is required to examine the roles of this 
osteoblast-specific factor in skeletal development and 
repair and human heritable disorders and how these 
anomalies may be treated with therapy based on the 
factor. 

Fracture Repair 

Fracture repair is a close recapitulation of embry
onic events and includes a complex interaction of 
growth-regulatory factors and responding cell popula
tions. Fracture repair results in the regeneration of an 
osseous structure that is physiologically and biome
chanically indistinguishable from the original. The re
generation cycle is coupled with and dependent on 
BMPs (37). 

Immediately after a bone is fractured, an inflamma
tory response is elicited, activation of complement cas
cade ensues, and vascular damage at the injury site 
causes extravasation and cell signaling. Proteolytic 
degradation of the extracellular matrix produces che
motactic remnants luring monocytes and macrophages 
to the wound bed; activated macrophages release basic 
fibroblast growth factor (bFGF), stimulating endothe
lial cells to express plasminogen activator and pro
collagenase (17). Growth factors released from the 



alpha granules of degranulating platelets are sig
nals for polymorphonuclear leukocytes, lymphocytes, 
monocytes, and macrophages. 

The extravasated, localized collection of blood will 
clot, form a hematoma, establish a hemostatic plug, 
and prevent blood loss (Fig. 1 ). Orchestrating the clot
ting cascade are platelets, which have the dual func
tion of hemostasis control and mediator signaling 
through expression of platelet-derived growth factor 
(PDGF). TGF-~, and bFGF (33). 

The early fracture environment is characterized 
by a decrease in oxygen tension and pH, conditions 
that facilitate the operational activities of polymor
phonuclear leukocytes and macrophages (33). Poly
morphonuclear leukocytes remove microorganisms 
and microdebris, whereas larger-sized materials are 
handled by macrophages that may develop into poly
karyon, multinucleated giant cells. Macrophages pro
vide a formidable synthesis capability to the wound 
site by manufacturing growth factors to fortify cell 
activity, recruit cells, and provoke mitogencsis and 
chemotaxis throughout the injury repair cascade until 
abatement. 

By days 3-5 following fracture, a repair blastema 
develops that consists of new blood vessels, cells (e.g., 
fibroblasts and macrophages), and collagen isotypes. 
Selective binding of growth factors to collagens may 
localize, protect, and temporally position growth fac
tors to optimize cell interaction (83). Therefore, the 
collagenous component of the repairing wound is a 
key instructional substratum to present TGF-~, bFGF, 
PDGF, and the BMPs to receptive cells (Fig. 1). 
Undifferentiated cells traversing neovasculature and 
osteoprogenitor cells localized to periosteum and en
dosteum anchor to the granulation tissue collagen and 
differentiate into chondrocytes and osteoblasts under 
the aegis of signaling molecules, namely, the BMPs 
(83,85). The biological influence of the BMPs on cell 
differentiation is of particular interest with respect to 
bone formation. The combinatorial activities of cell 
anchorage, transduction, and cell-factor interaction 
promote cell differentiation to specific phenotypes to 
repair the osseous wound. Teams of cells, as well as 
growth/differentiating factors (e.g., TGF-~, fibroblast 
growth factors [FGFs ], vascular endothelial growth 
factor, BMPs, and PDGF), ensure fracture healing by 
approximately 6-8 weeks after injury (33). The recon
struction of a bone structure indistinguishable from 
the tissue before injury is carefully crafted by osteo
blasts and ostcoclasts (104). However, if sufficient 
quantities of cells are not resident at the fracture site, 
they must be recruited, expanded in number, and 
acted on by the proper combination of growth conver -
sion factors. At the injury site, fragments of fibronec
tin (a ubiquitous attachment factor) and degradation 
products from the extracellular matrix stimulate the 

conversion of monocytes to osteoclasts (33). More
over, macrophages at the wound site release bFGF 
and vascular endothelial growth factor, prompting 
neoangiogenesis and vessel formation to provide tran
sit for additional cells to replenish those lost to in
jury (41). 

The clinical relevance of BMPs and a responding 
cell population at the wound site represent the final 
common pathway of the elements that contribute to 
the regeneration of bone (85). Cells must be compe
tent to respond to the BMP signal or signals, and 
sufficient quantities and types of biologically active 
BMPs must be present to produce the desired out
come, e.g., to regenerate the form and function of 
bone. BMPs and their receptors are stewards in this 
marvelous process (91). 

Recent studies have revealed increased expression 
of BMPs 2, 4, and 7 in primitive mesenchymal and 
osteoprogenitor cells, fibroblasts, and proliferating 
chondrocytes present at the fracture site ( 4,68,75). Ex
pression of BMPs 2 and 4 was upregulated in mesen
chymal cells that had migrated into a fracture opening 
and begun to proliferate ( 4 ). In addition, BMPs 2, 4, 
and 7 were present in newly formed trabecular bone 
and ostcoclast-like cells (75). Taken together, these 
findings suggest that BMPs 2, 4, and 7 work coopera
tively and synergistically to promote fracture healing 
and bone regeneration (91). 

Clinical Applications of BMPs 

A flurry of research has focused on the applica
tion of BMPs in clinically relevant animal models 
(18.19,22,34,59,63,102,103,105,106,120,121 ). ln animal 
model systems, rhBMPs promoted fusion of vertebral 
bodies and regeneration of skull, mandibular, and 
long-bone defects (3,18-22,59,63,87,98,120,121 ). 

Two published clinical reports used milligram doses 
of rhBMP-2 (5,39). In these reports, the magnitude of 
the protein required for effect underscores a penetrat
ing clinical challenge and invokes several compelling 
questions. Do milligram doses of the protein portend 
daunting obstacles caused by manufacturing costs that 
will have to be absorbed by patients? If milligram 
quantities are needed, can rhBMPs be manufactured 
to meet these needs? Moreover, does the administra
tion of milligrams of BMPs to a patient unleash sinis
ter, unpredictable, or unexpected biological sequelae? 
Furthermore, what may be the outcome of multiple 
dosing? 

The format used to administer rhBMP to a patient 
could have a striking impact on dosing needs. More
over, the availability of a locally responsive cell pop
ulation will impact on dosing and outcome (37). In 
terms of format, the quantity of the protein necessary 
for a clinical effect may be modulated with a car
rier/delivery system (35,36,112). A carrier/delivery 



system could titrate BMP release kinetics and bio
availability at the application sites as well as provide 
a haven for exogenous BMP-responsive cells (35,37). 
The clinical studies reported for rhBMP-2 used a col
lagen delivery system (5,39). Perhaps a more suitable 
carrier/delivery system could economically package 
and deliver a physiological judicious dose of the pro
tein for clinical applications. 

Summary and Perspectives 

The regeneration of bone is a remarkable, complex 
physiological process, and BMPs are a formidable 
clinical tool to promote its regeneration. By defining 
roles played by BMPs in developmental biology and 
bone regeneration, significant progress has been made 
to identify cell-signaling molecules and their regu
lators. For example, the regulators of BMPs that in
clude noggin, chordin, cerberus, dan, and gremlin may 
be harnessed as therapies to offset calcification en
countered after total hip arthroplasties. Furthermore, 
exploiting BMPs and Smads may generate new ther
apeutic options for bone repair. Another compel
ling clinical consideration is the trans-acting factor 
osteoblast-specific factor-2, which can promote os
teoblast differentiation. Moreover, the affiliation of 
osteoblast-specific factor-2 with heritable disorders 
merits exploration. A recognized daunting challenge 
includes a carrier/delivery system for the powerful 
morphogenetic therapeutic tools, as well as osteopro
genitor cells and intracellular transduction and tran
scriptional factors. In addition, the long-term effects of 
administering superphysiological doses of rhBMPs to 
patients must be assessed systematically. A new gen
eration carrier/delivery system may be the answer to 
offset dosing liabilities as well as to provide residence 
for exogenous, BMP-receptive osteoprogenitor cells 
(111,112). 

The areas highlighted in this review offer fertile ter
ritory for thought and research to develop rational 
clinical treatments to promote bone regeneration and 
to understand some of the biological roles of BMPs. 
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