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Characterization of a Resistive 
Half Plane over a Resistive Sheet 

John R. Natzke, Student Member, IEEE, and John L. Volakis, Senior Member, IEEE 

Abstract- The diffraction of a resistive half plane over a 
planar resistive sheet under plane wave illum1ination is deter
mined via the dual integral equation method (a variation of the 
Wiener-Hopf method). The solution is obtained upon splitting 
the associated Wiener-Hopf functions via a numerically efficient 
routine. Based on the derived exact half plane dliffraction coeffi
cient, a simplified equivalent model of the structure is developed 
when the separation of the half plane and resistive plane is on 
the order of a tenth of a wavelength or less. The model preserves 
the geometrical optics field of the original structure for all angles 
and is based on an approximate image theory of the resistive 
plane. Good agreement is obtained with the diffracted field exact 
solution. 

I. INTRODUCTION 

T HE angular spectrum method set forth by Booker and 
Clemmow [1] has been applied to many diffracting 

structures composed of a half plane over a substrate [2]-[5]. In 
many cases resistive sheets [6] are used over dielectric layers 
for radar cross section control, transmittivity control, or other 
applications. Also, when the dielectric layer is thin, it can be 
equivalently replaced by a resistive sheet. 

In this paper we particularly consider the diffraction by a re
sistive half plane vertically displaced from a uniform resistive 
sheet (see Fig. 1). The corresponding exact diffraction coef
ficient is derived for this configuration with an H-polarized 
illumination using the dual integral equation method, following 
a development similar to that in [3], [4]. The encountered 
Wiener-Hopf split function is factorized via an efficient nu
merical procedure discussed in [7]. 

When the separation between the resistive half plane and 
resistive sheet is on the order of a tenth of a wavelength or 
less, the structure is virtually planar. Thus a simplified model 
of the original configuration is a single equivalent resistive 
half plane illuminated by a direct and an image wave. This 
model relies on image theory to remove the lower planar sheet 
by introducing an image field and a second half plane placed 
symmetrically below the original resistive sheet. The two half 
planes are then combined into a single one with an equivalent 
resistivity such that the geometrical optics field of the original 
structure is preserved everywhere. The diffraction coefficient 
for this equivalent half plane is much simpler and is given by 
[8]. Several patterns are presented for assessing the model's 
accuracy for various resistivities and separation distances. This 
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Fig. I. Geometry of the resistive half plane over an infinite resistive sheet. 

is done by comparison with the exact solution, which is in tum 
validated using a moment method solution. 

II. DUAL INTEGRAL EQUATION FORMULATION 

Consider a resistive half plane of resistivity R1 , placed a 
distance d above a planar resistive sheet of resistivity R as 
shown in Fig. 1. Mathematically, the resistive half plane and 
the uniform resistive sheet satisfy the boundary conditions: 

iJ x iJ x E = -R1iJ x [H+- n-] 

iJ x iJ x E = -RiJ x [H+- n-] 

y = 0, X> 0 (1) 

y = -d, -oo < x < oo, (2) 

in which n± denotes the total magnetic field above and below 
the appropriate resistive sheet and E is likewise the total 
electric field, which is continuous across the sheets. 

Assume the plane wave 

Hi = i ejkp cos (¢- ¢a ) (3) 

is impinging upon the structure in Fig. 1, where k is the wave 
number, (p , ¢) is the usual cylindrical coordinates, and ¢o 
is the angle of incidence such that 0 < ¢0 < 1r . For this 
excitation the total field may be represented as 

H _ {H~+H;+H;, 
z- H! + H; , 

y > -d 
y <-d. 

(4) 

We identify H; and H! as the reflected and transmitted 
fields, respectively, of the planar resistive sheet satisfying (2). 
Namely 

H; = -f(sin¢o)e-j2kdsin¢oejkpcos(¢Ho) (5) 

H! = T(sin¢o)ejkpcos(¢- ¢o), (6) 

where 
. sin ¢o 

r(sm¢o) = . ¢ ' ry+sm 0 

T(sin¢o) = 1 + r(sin¢o) (7) 

0018-926X/93$03.00 © 1993 IEEE 
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Fig. 2. Illustration of the C contour in the a and >. planes. 

are the plane wave reflection and transmission coefficients 
in which ry = 2R/Z0 . Further, we identify H; in (4) as 
the scattered field caused by the presence of the half plane 
at y = 0. This field is due to currents excited on the half 
plane which can be represented by an angular spectral integral 
[9]. Accounting for the reflections from (and transmissions 
through) the resistive plane at y = -d, the total scattered field 
is given by [3] 

H: = L [1 + r(sina) e-j2kdsin a l 

·P(cosa)e-jkpcos(¢-a) da (8) 

for y > 0, 

H; =-L [e- jkp cos(¢+<>) -r(sin a)e-j2kd sin "'e-jkp cos(¢- <>) ] 

·P(cos a) da (9) 

for -d < y < 0, and 

H; =-LT(sin a)P(cos a)e- jkp cos(<f>+a) da (10) 

for y < -d, where the contour C is defined in Fig. 2(a) and 
P(cos a) is the unknown spectra proportional to the current 
on the half plane. 

In the following we shall invoke the appropriate boundary 
conditions to determine the unknown spectra P (cos a) . First, 
to maintain the continuity of the total magnetic field across 
x < 0, y = 0, the condition fi x (H+ -H-) = 0 must be 
satisfied. Upon using (3), (5), (8), and (9) in conjunction with 
(4), this condition implies 

1
00 

P(>..) e-jkx>. d)..= 0 X< 0, (11) 
-00~ , 

where )... = cos a, and the path of integration is shown in Fig. 
2(b). Since this integral equation is valid only for x < 0, the 
path of integration can be closed by a semi-infinite circle in 
the upper )... plane without altering the result of the integration. 
From Cauchy's theorem, P(>..)/~ must then be free of 
zeros, branch cuts, or any other singularities in the upper half 
plane. Consequently, we can state that 

P(>..) = U(>..) 
~ ' 

(12) 

where U(>..) is a function regular in the upper half of the )... 
plane. 

The application of (1) across the half plane x > 0, y = 0, 
leads to the integral equation 

1oo [ 'T/1 + 1 + r( \/i--=--).2)e-j2kdv'l->.2] 
- oo ~ 

· P(>..)e-jkx>. d).. 

= J1- >..6 [1 + r( J1- >..6) e -j2kd~] ejkx>.o, 

X> 0, (13) 

in which ry1 = 2R 1/ Zo and >..o = cos if>o . Since ( 13) is valid 
only for x > 0, the path of integration may now be closed 
by a semi-infinite circle in the lower half of the )... plane. 
On applying Cauchy's theorem we then obtain the functional 
equation 

Q(>..) P(>..) = __ 1_ L(>..) ~A( ~) 
~ 21fjL(->..o) A+Ao yJ.-A(J 

(14) 
where 

A( V1- >..6) = 1 + r( V1- >..6 )e-j2kd~, (16) 

and L(>..) is a function regular in the lower half of the)... plane. 
To proceed further, Q(>..) must first be factorized as a 

product of upper and lower half plane functions. In light of 
(7), we write (15) as 

where 

Q(>..) = Uw(>..)Lw(>..) 
u.(>..)L.(>..) ' 

(17) 

Uw(>..)Lw(A) =('Til+ J1=):2)(ry + J1=):2) 
-(1 _ >..2)e-j2k#l ->.2 (1 8) 

and 

u.(>..)L.(>..) = ry + J1=):2. (19) 

Here Uw(>..) and U.(>..) denote upper half plane functions 
and Lw( >..) and£.(>..) denote lower half plane functions. The 
factorization of (18) can be accomplished using numerical 
methods [7] . For the case of (19), the known factorization [10] 

( 'Y + ~) -l = K+(>.. , -y) K_(>.. , -y) (20) 
1- )... 2 

is noted, resulting in 

~ 
U.( >..) = fo K+(>.. , 1/ ry) = L.( ->..). (21 ) 

Explicit, nonintegral expressions for K+ (>.., -y) are given in 
[11] for Re ('Y) > 0. If Re ('Y) < 0, then K+(>.. , -y) must be 
replaced with the expression [12] 

. 1>..-~ 
J-r K+ (>.. , - -r) · 

Returning now to (14), upon making use of (17) and (12), 
we find that L()...) = Lw ()...) / Ls ()...) to ensure the regularity 
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Fig. 3. Intermediate equ.ivalent geometry problem recovering the GO field (y > 0) of the structure in Fig. 1. 

of U(>-.) and L(>-.) in their respective planes. Then from (14) 
we obtain 

P (>-.) = -~~~A( 11=>:2) 
27rJ ).. + Ao V .l - Ao 

Us()..) Ls( -Ao) 
. Uw(A) Lw( ->-.o)" 

(22) 

This is proportional to the spectrum of the current on the 
resistive half plane in the presence of the resistive sheet at 
y = -d. 

The far-zone scattered field is determined by substituting 
the spectral function P(>-.) as given by (22) into (8) and (10) 
and evaluating the integrals via the steepest descent method. 
Doing so, we obtain the form 

- jkp 

H: ~ e ..jP S1 (¢, ¢o) , 

where S 1 ( ¢ , ¢o) is often denoted as the diffraction coefficient 
of the configuration and is given by 

_ e - i1f/
4 {A(sin ¢ ) } 

Sl(¢, ¢o) - - V2ik T ( -sin ¢ ) 

for 

A( . "' ) sin ¢ sin ¢o 
· Slll 'f'O 

cos ¢ + cos ¢o 
Us( cos ¢ )Us(cos ¢o) 
Uw(cos ¢ )Uw (cos ¢o) 

{ 
0 <¢< 7r} 

7r < ¢ < 27r . 

(23) 

In deriving this expression the identities Us ().. ) = Ls (-)..) 
and Uw( >-. ) = Lw( ->-. ) were employed. S1(¢, ¢o) is generally 
referred to as the diffraction coefficient of the upper resistive 
half plane in the presence of the lower sheet. 

The diffracted field expressions can be verified for two 
limiting cases. When TJ -+ oo, the resistive sheet vanishes, 
and the diffraction coefficient becomes 

TJl V2ik cos ¢ + cos ¢o 

· K+ (cos ¢, 1/TJ1)K+(cos ¢0 , 1/ TJI) (24) 

as given in [8]. The other limiting case is d -+ 0, for which 
(23) reduces to the H -polarization diffraction coefficient of 
a junction formed by two coplanar resistive half planes as 

derived in [13] . The pertinent half planes have resistivities 
R = 2Zo/TJ (x < 0) and R 2 = 2Z0 /TJ2 (x > 0), where 
TJ2 = TJ1 TJ I ( TJ1 + TJ). 

III. SIMPLIFIED MODEL FOR SMALL d 

When the separation between the resistive half plane and 
lower resistive sheet is small (i.e., kd « 1), the structure is 
virtually planar, and it is possible and instructive to seek a 
simplification of the exact solution developed in the previ
ous section. To do so we shall first construct an equivalent 
geometry which recovers the geometrical optics (GO) fields 
of the original one in Fig. 1. With this in mind, R can be 
removed by introducing an appropriate image of the resistive 
half plane and of the incident field as illustrated in Fig. 3. To 
recover the GO fields of the original geometry it is necessary 
to sum the GO fields associated with the pair of half planes in 
Fig. 3 under the direct (H~ ) and imaged (H;) illumination. 
In addition, an appropriate value for the resistivity R1 of the 
imaged half plane must be specified. To determine R1 and 
fi; we consider the GO fields of the original structure. The 
reflected field associated with its right side (side of the resistive 
half plane) is found to be 

Hrl = _ r + 1 eikp cos (c/> + c/>o) 
[ 

T2re -j2kdsin ¢0 ] 

z 1 1-flre-i2kdsin c/>o ' 

y > 0, (25) 

where f and T are defined in (7) and 

r 1 = - sin ¢o Tl = TJ l (26) 
TJ1 + sin ¢o TJ1 + sin <Po 

with TJl = 2R d Zo . The appropriate reflected field for the left 
side of the same geometry can be obtained by letting TJ1 -+ oo. 
On comparing the sum of the GO fields generated by the pair 
of sheets in Fig. 3 under the two illuminations with (25), we 
deduce that 

and 

in which 

¢ < 7r - ¢o 
¢ > 7r- ¢o, 

f' = T1 
1 + r1r2 

and H; is given in (5). Note that R1 and f' are functions of 
the incidence angle since our requirement was to recover the 
GO fields of the original structure for all incidence angles. 
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+ 

Fig. 4. Equivalent set of single resistive half planes recovering the reflected GO field (y > 0) of the structure in Fig. 1. The half planes lie in they = - d plane. 

Having determined the resistivity of the imaged half plane 
R1, we now proceed to combine the pair of half planes 
into a single equivalent half plane at x > 0, y = -q, 
0 :::; q :::; d. This is illustrated in Fig. 4 and for each 
illumination a different resistivity is required. This can be 
determined by comparing the GO fields (reflected for the direct 
illumination and transmitted for the imaged illumination) of 
the configurations in Figs. 3 and 4 and requiring that they 
be equal. Doing so, we find that the resistivity of the single 
equivalent half plane subjected to direct illumination must be 

Hi = - Zo sin ¢o 1 ~ f'i (27) 
1 

2 f ' 1 

where 

f'i = r 1 + 1 e j2kq sin ¢o 
[ 

T2f2 e-j4kdsin ¢0 ] 

1 1 1-fif2e-j4kd sin ¢0 • 
(28) 

When q = 0, the equivalent half plane is coincident with 
the original resistive half plane, and the equivalent resistivity 
Ri was seen to have an average value of R 1 as d was 
varied. Based on this observation and accounting for the 
¢ 0 dependence, an excellent approximation to .Ri for all q, 
0 :::; q :::; d, is found to be 

Ri ~ [R1 _ (R1 _ _R2)e-j4kdsin ¢0 ]e-j2kq sin ¢0 

Zo ·2k · "" + 2 sin ¢o ( e- 1 q sm "'0 
- 1) , (29) 

where 

R- - R1R1 
2- - ' 

R1 +R1 

which is the same as (27) and (28) with d = 0. We determined 
that for far-field scattering the best results were obtained by 
setting q = d. That is, the accuracy of the model was not 
adequate when .Ri is replaced by its average value of R 1. It is 
therefore necessary to retain the more accurate expressions for 
Ri given by (27) or (29), which are, unfortunately, functions 
of the incidence angle. 

For the imaged illumination, the corresponding half plane 
resistivity is found to be 

- r Zo . T[ 
R = ~ sm ¢o----

1 2 1 - T[ 
(30) 

with 

jr = Tf 
1 1-f2f2e-j4kdsin ¢0 

1 

(31) 

and the associated imaged field being set to H;, 0 < ¢ < 1r. 
With this imaged field, the reflected field of Fig. 4(a) plus 

the transmitted field of Fig. 4(b) completely recover the GO 
field of the original configuration in the entire y > 0 region. 
Equations (30) and (31) show that R'i :::; RI/2 as d and ¢0 

are varied, although its average value is not a constant. We 
found, however, that if R1 ~ R, the variation of R'i with d 
and ¢ 0 is sufficiently small such that a good approximation 
is the constant 

_Rr ~ Zo 71i(71 + 1)2 
1 - 2 ( 2711 + 1) (,., + 1) 2 - 1 ' 

(32) 

which is the expression reduced from (30) and (31) on setting 
d = 0 and ¢ 0 = 1r 12. 

The far-zone diffracted field as predicted by the single 
half plane models of Fig. 4 is easily computed by using the 
diffraction C?efficient (24). In particular, on superposing the 
fields generated by the direct and imaged illumination, we 
obtain the composite diffraction coefficient 

S2(¢, ¢o) = [DH(¢, ¢o, iit)-r(sin¢o)DH(¢, 27r-¢o, iir)l 
·e-jkd(sin ¢+sin ¢o), 0 < ¢ < 7r , (33) 

where iii = 2Ri I Zo with q = d, iii = 2R'i I Zo, and D H 

is given in (24). This should be compared with the exact 
diffraction coefficient given in (23). 

In the above, we presented a simplified equivalent model 
which recovers the reflected GO field of the original con
figuration in Fig. 1. It is not therefore expected that the 
same resistivities and associated model will also recover 
the transmitted GO field through the same configuration. 
Nevertheless, a similar procedure can be employed to construct 
an equivalent problem which is associated with the same GO 
field in the y < 0 region. Such a model is illustrated in Fig. 5, 
and in order for this model to recover the same GO transmitted 
field as that associated with the configuration in Fig. 1 we find 
that the resistivity of the equivalent half plane must be 

-t Zo . Tf 
R 1 =- sm¢o---- (34) 

2 1- Tf' 
where 

jt 
1 - 1 - r 1re-j2kd sin ¢o . (35) 

The corresponding diffracted field is given by 

52(¢, ¢o) = T(sin¢o)DH(¢, ¢o , iiDe-jkd(sin¢+sin ¢o), 
(36) 

where 1r < ¢ < 21r and as usual iii = 2Ri I Z0 . This diffraction 
coefficient should be compared with the exact one given by 
(23) . 
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Fig. 5. Equivalent problem recovering the transmitted GO field (y < -d) 
of the structure in Fig. 1. 
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Fig. 6. Comparison of backscatter as computed by the moment method and 
high-frequency solutions (of the exact geometry) of the resistive half plane 
configuration in Fig. 1 with R = R1 = Zo/4 ford= 0.1>. and d = 1>.. 

IV. NUMERICAL RESULTS 

The far-field amplitude S1 (¢, ¢0 ) in (23) was programmed 
for solution. The numerical factorization routine [7] was used 
to determine the upper half plane function Uw . As part of the 
verification of S1 (¢, ¢0 ), the limit as R---+ oo was taken and 
the result converged to that of an isolated resistive half plane 
R 1 as given in (24). Also, by taking the limit d---+ 0, S1 ( ¢, ¢0 ) 

was found to be in agreement with the material junction result 
in [13]. To complete the verification, the RCS based on the 
derived diffraction coefficient S1 ( ¢, ¢0 ) was compared with 
data generated by a method of moments implementation of 
the resistive half plane over resistive plane structure. RCS 
backscatter results are shown in Fig. 6 for separations of 
d = O.L\ and 1.0>. with R = R 1 = Z0 j4. The moment 
method data were generated by replacing the resistive half 
plane and infinite sheet with very wide resistive strips whose 
resistivity profile after being equal to either R or R 1 was 
then tapered quadratically to 20Z0 over a 60>. section. As 
seen, the agreement between the numerical and high-frequency 
solutions is excellent. Having validated the high-frequency 
solution, Fig. 7 then shows a characterization of the resistive 
half plane over the resistive sheet for difierent separation 
distances ranging from d = O.OOL\ to d = O.L\. 

To test the validity of the proposed simplified model (see 
Figs. 4 and 5), the far-field amplitudes S2 (¢, ¢0 ) in (33) 

20 

10 
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"C 

.5 
CD -10 
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CD 
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Fig. 7. Family of backscatter RCS curves (using the original geometry 
high-frequency solution) of the half plane configuration in Fig. 1 for different 
separation distances d. R = R1 = Zo/4 (top); R = Zo/4, R1 = Zo/ 20 
(bottom). 

and (36) were programmed as well. Backscatter results in 
magnitude are shown in Fig. 8 for d = O.OL\ with R = 
R 1 = Z0 /4 and ford= 0.25>. with R = Zo/4, R1 = Zo/20. 
Good agreement is obtained between the magnitudes of the 
high-frequency solutions based on the original and simplified 
geometries for all angles ¢, and d '::0 0.25>. was found to be the 
upper limit of the half plane model. This also holds for bistatic 
computations except near grazing angles of observation for 
some values of d. An example of a bistatic pattern is shown 
in Fig. 9, and it is again verified that the simplified model is 
a good representation of the original geometry. 

V. SUMMARY 

The exact diffraction coefficient was derived for a resistive 
half plane over an infinite resistive sheet using the dual integral 
equation method. An efficient numerical routine was em
ployed to factorize the associated Wiener-Hopf split function . 
The high-frequency solution was found to be in excellent 
agreement with data generated by a method of moments 
implementation of the structure, and the results were also 
verified for the two limiting cases (in the absence of the infinite 
resistive sheet and when the separation distance between the 
resistive half plane and sheet goes to zero) . 

Using the exact solution as a reference, a simplified equiv
alent model of the structure was developed for the case where 
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Fig. 8. Comparison of backscatter RCS curves based on the original 
geometry and simplified high-frequency solutions for d = 0.01>. with 
R = R1 = Zo/4 and. ford= 0.25 >. with R = Zo/ 4 , R1 = Zo/20 . 
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Fig. 9. Comparison of bistatic RCS curves based on the original geometry 
and simplified high-frequency solutions for ¢>o = 37r/4, R = R 1 = Zo /4, 
and d = 0.25>.. 

the separation of the resistive half plane and sheet is on the 
order of a tenth of a wavelength or less. The model consisted of 
a single resistive half plane illuminated with a direct and an im
age wave equal to the reflected field of the infinite sheet. Good 
agreement was generally obtained between the high-frequency 
solutions based on the original geometry and the simplified 
equivalent model for separation distances of up to d ~ 0.25>.. 
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