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Abstract

Limb amputations affect a significant portion of the world’s popu-
lation every year. The necessity for these operations can be associated
with related health conditions or a traumatic event. Currently, pros-
thetic devices intended to alleviate the burden of amputation lack many
of the premier features possessed by their biological counterparts. The
foremost of these features are agility and tactile function. In an effort to
address the former, researchers here investigate the fundamental connec-
tion between agile finger movement and brain signaling. In this study
each subject was asked to move his or her right index finger in sync with
a time-aligned finger movement demonstration while each movement was
labeled and the subject’s brain waves were recorded via a single-channel
electroencephalograph. This data was subsequently used to train and
test a deep neural network in an effort to classify each subject’s inten-
tion to rest and intention to extend his or her right index finger. On
average, the employed model yielded an accuracy of 63.3%, where the
most predictable subject’s movements were classified with an accuracy
of 70.5%.

∗Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.
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1 Introduction

Every year approximately 185,000 limb amputations occur in the United States
of America [11]. The loss of a limb can be life changing; once menial activities
quickly become laborious and nontrivial. Limb loss can also be accompanied
by mental health issues. Those who have recently lost a limb often report
depression associated with the new impairment of mobility [8]. The loss of a
limb can drastically change one’s lifestyle and can be extremely discouraging.

The difficulty with adjustment to life after limb loss is directly related to
loss of capability, both agile and tactile. What an amputee’s lost arm was
once able to feel and achieve through the intricacies of the biological brain-arm
network is lost. The once unacknowledged, seamless tie between the arm and
the brain becomes something mourned, especially in light of the sensation of the
limb’s persisting presence. Many amputees report feeling the limb’s continued
presence even after the limb is gone [8]. This sensation is an artifact of the
brain’s neuronal mapping associated with limb movement. These sensations
can be painful or painless and can include sensations such as perception of
movement, touch, temperature, pressure, vibration, and itch [15]. So the brain
still possesses a capacity to process these stimuli that were once associated with
the limb even after it is gone. This phenomenon seems to suggest that brain still
possesses the toolkit necessary to re-establish connection with a limb, organic
or not, in the place of the lost limb, given that the limb possesses compatible
sensing and actuating mechanisms.

Efforts to develop such a device could be established by first developing
rudimentary technologies that accurately interpret user intent. An attempt
is here made to procure and investigate the viability of such a technology
capable of detecting user intent to rest and extend his or her right index finger
through the use of single-channel electroencephalograph (EEG) and intelligent
classification of intention via a deep neural network (DNN).

2 Background

2.1 Brain–Computer Interfaces

There currently does not exist a prosthesis that can accurately and precisely
report sensations and execute actions to the same functional degree as an or-
ganic human appendage. This is largely because of the limitations of today’s
brain-computer interfaces (BCI). The human brain possesses approximately
100 billion neurons, a number that makes the prospect of reading from each
individual neural pathway in parallel daunting [6]. There has been a notable
trend in BCI development over the past few decades, specifically, every seven
years, the number of neural pathways that can be simultaneously monitored
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using a brain-computer interface doubles. Even with this exponential growth,
progress is still currently slow; according to this model, reaching a point where
all 100 billion neural pathways can be read simultaneously will take electro-
physiologists nearly 220 years [16]. While this does provide hope for the am-
putees of tomorrow, it does beg the question of whether or not an alternative
is currently in reach for amputees today. If such an alternative to total neural
monitoring does exist it would surmount one of the biggest obstacles on the
path to a more “seamless” prosthesis that senses and actuates with high levels
of accuracy and precision.

Approaches toward the development of advanced prostheses and a greater
understanding of the interaction between brain and limb have been rife. One
such study sought to investigate the viability of functional electrical stimula-
tion, through multi-electrode arrays implanted in the motor cortices of two rhe-
sus macaque monkeys who underwent temporary limb paralysis. This method
worked with the monkeys being able to control the flexion of four of their fore-
arm muscles. During these trials, the monkeys effectively doubled their max-
imum voluntary wrist flexion force and were able to follow visually displayed
force targets at two-thirds the speed of an unimpaired subject [13]. Studies
such as this one support the viability of invasive BCIs (i. e., electrocorticogra-
phy, or ECoG) for use in the prosthetics of tomorrow. Further studies utilizing
invasive BCIs have exhibited that the motor cortex can form a stable neural
representation for neuroprosthetic control, meaning that the brain exhibits a
deft capacity for adapting to and cooperating with prostheses through the use
of ECoG [5]. In one notable study, three test subjects (one with a neuropros-
thetic arm) were trained to control the amplitude of beta rhythm recorded over
the frontal areas of the brain using EEG. After six months of regular training,
subjects were able to use these controlled signals to move a cursor to targets
on a computer screen with greater than 90% accuracy. Additionally, the sub-
ject possessing a neuroprosthesis was able to use these signals to effectively
grasp objects with his prosthetic arm [7]. In contrast to the six month train-
ing period that subjects underwent in the above study, another study utilizing
EEG included the recording and power spectral analysis of neural signals from
a single subject with an implanted neuroprosthesis over a three day training
period. During this short time the subject was able to develop a stable neural
representation that allowed him to consciously switch between grasp phases of
the lateral grasp that his prosthetic provided. Using this developed ability, he
was ultimately able to move a simple object from one place to another [10].
In other studies, researchers have used EEG signal mapping to send appropri-
ate RF command signals to a prosthetic hand or have utilized support vector
machines (SVM) to accurately predict the right or left-handedness of intended
hand movement in subjects [12, 1].
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2.2 Deep Neural Networks

The first computational model for an artificial neural network was presented
by Warren McCulloch and Walter Pitts in 1943 [9]. In 1958, Frank Rosenblatt
built on top of this work to develop the perceptron, an algorithm for pattern
recognition [14]. Paul Werbos later developed a backpropagation algorithm
that allowed these perceptrons to be layered, ultimately yielding the rudimen-
tary model used for computing with artificial neural networks today [17]. A
more modern major development in this field has been the development of deep
learning, an idea first introduced in 1986 by Rina Dechter [4].

Recently there has been a resurgence of deep learning because of its uncanny
in ability to classify data such as images and speech compared to more classical
classification methods such as the SVM [3]. In an effort to capitalize on this
machinery’s ability to interpret digital signal data, methods are here employed
in an effort to isolate and detect subjective intent based on brainwave signals
collected from the subject’s scalp.

3 Methodology

3.1 Data Collection

This study utilized electroencephalograms from five right-handed subjects, four
male, one female. Each subject was connected to an EEG device, the Biopac
MP36, via a single channel and had his or her brainwaves subsequently recorded
for five trials, each three minutes in length. The electrodes were affixed to
each subject’s scalp using Elefix conductive EEG paste at FZ, C3, and C4, as
seen in Figure 1. This configuration choice was based on existing literature
regarding optimal EEG electrode placement for the detection of subjective
hand movement [2].

During each trial, subjects were told to mimic a video displaying a moving
right index finger. The index finger executed one event per second in a pre-
defined, looping sequence of events. As the subject replicated the movements
of the right index finger on-screen, each event was automatically labeled in
time. The sequence of finger-movement events used during this experiment
was rest (R), rest to extension (RE), extension (E), extension to rest (ER),
rest (R), rest to flexion (RF), flexion (F), and flexion to rest (FR). Because of
the apparent doubled concentration of R events, only half of these, Rs preced-
ing REs, were retained for final experimental analysis. This slight modification
ensured that all events were equally represented in the training set, discussed
in the next section. All data was collected in accordance with the collection
procedure approved by our university’s institutional review board for human
subjects research.
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Figure 1: Standard EEG electrode placement; electrodes were placed at FZ,
C3, and C4.

3.2 Data Analysis

Signal data was collected at 500 Hz and events were labeled in the Biopac
proprietary data analysis software, then subsequently exported and fed into
a Python script where the signals were graphed and analyzed. Subsequently,
the power spectral density (PSD) of each was calculated and plotted for ex-
ploration. In order to eliminate unnecessary information in the PSD data, a
random forest classifier (RFC) was employed to rank PSD data points in order
of significance. Using this information, researchers found that the frequency
band that lent the most insight into subject intention was from approximately
12.76 Hz to 30.85 Hz. This information was used to inform which elements in
the PSD data vector would be retained for training and testing the learning
models.

Figure 2 depicts the retained portion of the power spectral density of both
events. This retained portion was then processed using principal component
analysis (PCA) to further reduce the data down to two dimensions, a feature
vector size that was found to yield the best prediction performance. These
labeled feature vectors were then used to train and test an SVM employing
a radial basis function, and then a DNN utilizing the topology depicted in
Figure 3. Training and testing was executed using k-fold cross validation where,
for each subject, each model was trained on four of the subjects trials and then
used to predict the held-out trial. The average accuracies of each of these
classifications can be seen in Table 1 of the results section.
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Figure 2: Filtered power spectral density of the subject brain signals.

Figure 3: DNN topology with RELU input, RELU and tanh densing, and
sigmoid output layers.

4 Results

Table 1 depicts the prediction accuracies generated by the DNN and the SVM.
The average DNN classification accuracy across subjects was 63.3% and the
average SVM classification accuracy across subjects was 62.4%. The best pre-
diction accuracy across subjects was for the classification of subject B’s inten-
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Subject Classifier

DNN SVM

Subject A 0.600 0.586
Subject B 0.705 0.714
Subject C 0.627 0.609
Subject D 0.570 0.570
Subject E 0.664 0.641

Mean 0.633 0.624

Table 1: Per-subject and mean classification accuracy by classifier type.

tions where the DNN achieved an accuracy of 70.5% and the SVM achieved an
accuracy of 71.4%. The t-value associated with these results was t = 1.52 and
the p-value was p = 0.203, so the predictive accuracies of the SVM and DNN
were not statistically significantly different from each other.

5 Conclusions and Future Work

Due to the complexity of this problem and the minimalist approach to brain
signal sensing employed, the less-than-ideal results of this project were not en-
tirely surprising. While the method of detecting subjective intention to rest or
extend one’s finger used here may not be practical, the results of this exper-
iment beckon several other approaches to be explored in future work. These
include incorporating the use of electrocardiography and oculography channels
for artefact removal, adding more EEG channels, or utilizing an action, such
as wrist flexion, that evokes a greater activation potential and repeating the
process described here once more.

The implications of EEG-based intention detection beyond basic prosthet-
ics are far-reaching. If further work reveals that non-invasive EEG monitoring
can reliably yield subject intention or specific brain activity, technologies could
be developed that support BCI-based control of mechanical and electrical sys-
tems. This would enable smart home network technology that would allow
quadriplegic individuals to be able to perform household tasks such as opening
doors, using the restroom, cooking, and cleaning without the need of human
assistance.

Further research into BCI-based detection of other parameters describing
an individual’s state could be utilized to promote human safety. For example,
driver wakefulness could be monitored to prevent traffic accidents by provid-
ing drowsiness warnings. Additionally, such a technology could be used by
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physicians to telemetrically monitor patient health. As medicine continues to
become a more data-oriented profession, such a monitoring system could prove
to be an invaluable diagnostic tool. If this technology were to be effectively
harnessed, it would have the potential to revolutionize assistive and medical
technology and drastically impact the way that humans and machines typically
interact.
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