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Clues About Bluffing in Clue : Is Conventional Wisdom Wise?

David M. Hansen Affiliate Member, IEEE1, Kyle D. Hansen2

1College of Engineering, George Fox University, Newberg, OR, USA
2Westmont College, Santa Barabara, CA, USA

We have used the board game Clue as a pedagogical tool in our course on Artificial Intelligence to teach formal logic through the
development of logic-based computational game-playing agents. The development of game-playing agents allows us to experimentally
test many game-play strategies and we have encountered some surprising results that refine “conventional wisdom” for playing
Clue. In this paper we consider the effect of the oft-used strategy wherein a player uses their own cards when making suggestions
(i.e., “bluffing”) early in the game to mislead other players or to focus on acquiring a particular kind of knowledge. We begin
with an intuitive argument against this strategy together with a quantitative probabilistic analysis of this strategy’s cost to a player
that both suggest “bluffing” should be detrimental to winning the game. We then present our counter-intuitive simulation results
from playing computational agents that “bluff” against those that do not that show “bluffing” to be beneficial. We conclude with a
nuanced assessment of the cost and benefit of “bluffing” in Clue that shows the strategy, when used correctly, to be beneficial and,
when used incorrectly, to be detrimental.

Index Terms—Benchmarking, Board games, Competitions, Multi-player games, Strategy games

I. INTRODUCTION

For many years we have used Clue R©1 as a pedagogical tool2

in our Artificial Intelligence course at George Fox University
as a motivating platform for the development of “intelligent”
computational agents [1].

Clue is a strategy game of reasoning with limited knowledge
to deduce an initially hidden solution — the “who, what
where” of a murder. The game’s domain consists of 6 persons
(“suspects”), 6 weapons, and 9 rooms, each represented by
a card in the physical game. Game setup involves drawing
one random card from each category (suspect, weapon, room)
and hiding them as the solution. The remaining 18 cards are
shuffled and dealt to the players.3

The game is played on a physical board that depicts the
rooms distributed in space and, on each turn, a player rolls a
die to move about the board with the intent of entering a room
where they can make a guess about what suspect, weapon,
and room are in the solution. These guesses as referred to as
“suggestions” and the one restriction on a suggestion is that
it must include the room where the player is located. When a
player makes a suggestion, opponents are polled in turn-order
as to whether or not they are able to “refute” the suggestion
by privately revealing to the suggester alone which card in the
suggestion the opponent holds. Once the suggestion has been
refuted, no further opponents are polled and the turn passes
to the next player. Once a player has deduced the hidden set
of cards in the solution they may make a final game-winning
“accusation” on their turn.45

1Clue is known outside the United States as Cluedo R©.
2Calling it Glomus — a rough Latin translation of the word “clue” being

a skein of yarn of the sort used by Ariadne to escape the maze in the myth
of the Minotaur.

3Games can be played by 2-6 players and cards in games of 4 or 5 players
will not be dealt evenly.

4There is restriction that the player occupy the room used in their accusation
5A false accusation ends the game for a mistaken player.

In our AI course, students develop “agents” (i.e., computer
programs) that are capable of playing Clue using a game-
server we have developed that enables students to compete
against one another, and faculty, to test the logic and strategies
employed by their agents. Over time, some interesting results
have emerged with respect to the strategies that are most
effective at winning the game. Somewhat surprisingly, one
strategy many human players and student agents routinely
employ — using cards in a suggestion that they hold in their
hand — is not well-studied yet assumed to be beneficial.6

We begin with a discussion of common logical approaches
to playing the game of Clue. We then present an intuitive and
probabilistic analysis of the effects of using one’s own cards
in suggestions followed by counter-intuitive experimental ev-
idence of the effect of using this strategy.

II. RELATED WORK

Clue has sometimes been used as a pedagogical device
for teaching formal logic [2], [3]. Others have used Clue to
investigate how to develop higher-level systems for machine
learning and automated theorem proving [4]–[6]. While these
approaches formalize the logic for playing a legal and even
“intelligent” game of Clue, they do not address game-play
strategy in general, nor the use of one’s own cards in sugges-
tions in particular.

However, non-academic web sites with discussions of strate-
gies for playing Clue endorse using one’s own cards in
suggestions with a variety of rationales that generally include
1) confusing opponents or 2), gathering information on a
particular kind of card [7]–[10].

With respect to the strategy of using cards one holds,
Thomas Ferguson addresses what he denotes as “bluffing” in
the context of “Two-Person Zero-Sum Games” in Part II of

6Students in our course who are familiar with the game routinely discuss
and use this strategy.



his textbook on Game Theory [11]. Ferguson describes a Clue-
like game “Guess It!” to demonstrate the need for “bluffing”
by a player to prevent an opponent from winning a game by
presuming the player is always “honest”:

From a deck with m + n + 1 distinct cards,
m cards are dealt to Player I, n cards are dealt to
Player II, and the remaining card, called the “target
card”, is placed face down on the table. Players know
their own cards but not those of their opponent.
The objective is to guess correctly the target card.
Players alternate moves, with Player I starting. At
each move, a player may either

(1) guess at the target card, in which case the
game ends, with the winner being the player who
guessed if the guess is correct, and his opponent if
the guess is incorrect, or

(2) ask if the other player holds a certain card.
If the other player has the card, that card must be
shown and is removed from play.

With a deck of say 11 cards and each player
receiving 5 cards, this is a nice playable game that
illustrates need for bluffing in a clear way. If a player
asks about a card that is in his own hand, he knows
what the answer will be. We call such a play a bluff.
If a player asks about a card not in his hand, we say
he is honest. If a player is always honest and the card
he asks about is the target card, the other player will
know that the requested card is the target card and
so will win. Thus a player must bluff occasionally.
Bluffing may also lure the opponent into a wrong
guess at the target card [11, p II-63].

While useful, this limits consideration of “bluffing” and
“honesty” to the context of Two-Person Zero-Sum Games such
as “Guess-It!”; these strategies are not addressed in multi-
player games such as Clue. Moreover, Ferguson does not
address the strategic question of when or how often one should
bluff to optimize one’s chance of winning, perhaps due to the
difficulty of integrating “higher-order information (what are
the other players thinking)” [12].

III. GAME-PLAY

The design of the board game suggests a game-play strategy
of using direct proof through the “process of elimination” by
learning which players hold what cards — the remaining card
therefore being part of the solution. Players must also strate-
gically move about the board in order to acquire information
about the room where the “murder” took place.

A. Proving “Whodunit”

There are two ways to prove “whodunit.” The first proof
technique is through the process of elimination and is the
mechanism most casual board game players use owing to the
inclusion of a paper notepad designed for this purpose. As
the game progresses, players learn what cards other players
have in their hands and eliminate them from consideration.
Thus a card is known to be part of the solution when there
is exactly one card left that has not been determined to be

in some player’s hand. We might express this deductive rule
concisely using predicate logic

isInSolution(Card)

← ∃!Card∀Player(¬has(Player, Card))

A player can be known to have a card in their hand if
• I am the player and have the card in my hand, or
• a player refuted my suggestion by showing the card to

me, or
• a player refuted a suggestion and we know that the player

can not have in their hand the other two cards used in
the suggestion

Most casual board game players rely on the first two mecha-
nisms and omit the third that depends on determining what
cards other players can not have in their hands. Others
formally [2], [3] and informally [10], [13], [14] observe that,
with some additional note-taking, the “process of deduction”
can also be employed by knowing what cards players do not
have in their hand — a card all players can not have therefore
being part of the solution. Leveraging a player’s inability to
refute a suggestion leads to the second proof technique.

The second proof technique is through the “process of
deduction.” This technique relies on deducing and inferring
what cards are in the solution by observing what cards players
can not have in their hands and drawing an indirect conclusion
about what card is part of the solution. Thus a card is known
to be part of the solution when it is known that every player
can not have it in their hand

isInSolution(Card)

← ∀Player(canNotHave(Player, Card))

A player can be known to not have a card if
• the player was unable to refute a suggestion that included

the card, or
• some other player is known to have the card, or
• the card is known to be part of the solution
An observant reader may notice the “indirect recursive”

nature of these two proof techniques as proving what a player
has may depend on proving what another player can not have
which may depend on proving what another player has. . . The
“mutually recursive” nature of these two proof techniques
poses a programming challenge for developing computational
agents [5]. Straightforward programming solutions can be
implemented but are outside the scope of this paper and left
as an exercise for the reader.

B. Game-play Heuristics

A reasonable game-play heuristic is to suggest cards that
have the highest probability of being part of the solution.
Based on the proof techniques described above, this means
suggesting a card that 1) is not known to be in any player’s
hand and 2), we know most other players can not have in their
hand. Suppose we have six players and the traditional number
of six weapons. If we know that a particular weapon is not
in the hands of three players then there remain four possible
locations for that card; it must be in one of the remaining three



players’ hands or the solution.7 This weapon would make a
more logical choice to explore than another weapon we know
nothing about that may be present in any other player’s hand
as well as the solution.

Heuristics for choosing what room to suggest are com-
plicated by the fact that the player must be present in the
room used in their suggestion. All things being equal, the
general heuristic used for suggesting the most probable suspect
and weapon still applies. However, as the game progresses, it
becomes increasingly rare that a player has a choice between
two viable rooms in the same turn.8 While a discussion of the
heuristics for choosing where to move is beyond the scope
of this paper, the computational agent we have developed to
compete with our students uses over 25 heuristic rules to
choose what room to suggest. We make no claim that the
rules we use are optimal, only that they seem reasonable,
are effective in playing against other agents, and serve to
demonstrate that Clue has more complexity than it may appear.

There are also useful game-play heuristics one can employ
when choosing how to refute another player’s suggestion. For
example, if one has both the suspect and the room that was
suggested, one might choose to show the suspect since room
choices are constrained and a player must leave and re-enter
the room before suggesting it again. On the other hand, if
one holds only one suspect card but many room cards, one
may expect that the opponent has more suspect cards and
fewer room cards in their hand and perhaps it would be better
to show them a room card. As the game progresses, it is
reasonable to reveal cards that one has previously shown other
players since the fact that one holds such a card has likely been
deduced by others using the rules of deduction described in
Section III-A.

These game-play heuristics are by no means meant to be
exhaustive nor authoritative and we refer interested readers to
work by others discussed in Section II. As we have explored
Clue in the development of computational agents, our students
find that there is far more complexity and nuance to the game
than it appears and even subtle game-play heuristics can have
a measurable effect on an agent’s performance.

One strategy we have yet to discuss is making a suggestion
that includes cards one holds in their own hand. There are
three common scenarios where this is considered to be advan-
tageous. One recommended scenario is to suggest one’s own
cards in order to focus on a particular kind of card (e.g., use a
suspect and room from one’s hand to try to gain information
specifically about the weapon). Many players (e.g., [14] and
students of our AI course) report using this strategy when
playing the board game. A related scenario is to suggest one’s
own cards early in the game to lead other players astray.
A third scenario arises later in the game when a player has
determined that some card, e.g. a particular weapon, is part
of the solution. It is then reasonable for that player to suggest
a weapon card they hold so that 1) their suggestion gathers

7In [15] Neller and Luo provide a more robust assessment of probability in
Clue by sampling Models of where cards could be based on what is known.

8Our game-server mentioned in Section 2 employs a simplified connected
digraph of rooms, eliminating the “hallways” between them; players may still
need to travel through a succession of rooms to reach a viable room.

information about the remaining unknown cards in the solution
while 2), not leading others to the deduce the actual card in
the solution. These uses of one’s own cards corresponds to
Ferguson’s notion of “bluffing” and we will adopt the term
“bluffing” to generally mean suggesting one or more cards
from one’s own hand for these purposes.

IV. ASSESSING THE CONVENTIONAL WISDOM OF
BLUFFING

Our computational Clue-playing agents were initially de-
signed to mimic the way we played the board game by peri-
odically bluffing early in the game. But results emerged during
the development and testing of our computational agents that
led us to reconsider this strategy and assess, formally and
experimentally, whether this “conventional wisdom” was wise.

A. An Intuitive Argument Against Bluffing

Although the design of the board game suggests using the
“process of elimination” to win the game, the “deductive”
proof technique described in Section III-A leads to a solution
more quickly. To understand why this is so, consider what
information players learn during a typical turn. The player
who makes a suggestion that is refuted will definitively learn
what other player holds a particular card. For many casual
board game players who rely on the “process of elimination”,
that is the only information gained during a turn. However,
using “deduction”, this player has also learned that every
other player can not have that card. Furthermore, every player
that is unable to refute a suggestion yields up to 3 times as
much information to all other players who definitively learn
that player can not have the cards suggested. Thus turns
can yield a good deal of information that can be used to
quickly “deduce” the solution. Given that players acquire more
information about who does not have a card and can arrive at
the solution more quickly using deduction, we now give an
intuitive explanation for the cost of bluffing.

Let us first consider the extreme case where a player makes
an irrefutable suggestion using 3 cards they hold in their
hand (a strategy sometimes suggested by players [9], [14]).
In this instance, the player making the suggestion acquires no
information about what other players hold in their hands to
aid in a “proof by elimination.” The player also acquires no
information to aid in a “deductive” proof since they already
know that the other players do not have the cards they used
in the suggestion as noted by Gregor and user1873 in [8].
Worse yet, this strategy yields the maximum information that
can be gained by opponents who will learn that every other
player does not have the 3 cards suggested; the cards can
be in only one of two places: 1) the hand of the player
making the suggestion or 2), the “case file” that holds the
solution. And, while this strategy may lead opponents to
waste time by focusing on cards they deem “highly probable”
that are not part of the solution, the amount of information
this strategy gives away to opponents far outweighs any
confusion incurred; confusion that is quickly resolved through
subsequent turns by other players that will eliminate these
cards from consideration.



But what about less aggressive strategies that bluff with only
one card?

B. Quantitative Analysis of Bluffing

In what follows, we assume a game of 6 players with 21
cards total: 6 weapons, 6 suspects, and 9 rooms. Thus, each
player (and the solution) are given 3 cards. Moreover, we
consider bluffing on the very first turn of the game when the
player has only knowledge of the cards in their hand, enabling
a straightforward and consistent analysis.

Suppose player p0 makes an “honest” (i.e., without bluffing)
suggestion s = (C1, C2, C3), where each of these cards is of
a different type. In the average scenario, these cards will be
spaced out equally among the 18 cards not in the hand of
player p0. Thus we expect the remaining 15 cards not in s nor
the hand of p0 to be spaced evenly around C1, C2, and C3, so
that there are an expected number of 3.75 cards on each side
of each card in s. This fact is illustrated in Figure 1 where
each � represents a set of 3.75 cards.

handOf(p0) � C1 � C2 � C3 �

Fig. 1. Expected Honest Distribution

Thus we expect to be refuted on card number 4.75, which is
to say, by a hypothetical player p1.58. As a discrete problem,
the ceiling function helps us make sense of this to say that we
expect an honest suggestion to be refuted by player p2.

Suppose now that p0 bluffs with a random card B in their
hand, so that g = (C1, C2, B). We say that a card C is eligible
if the type of C is not the same as that of B (e.g., if p0 bluffs
with a room, a card is eligible if and only if it is a weapon
or a suspect). Without considering the type of card B, we can
calculate that 2/3 of all cards are expected to remain eligible.
Thus there are an expected 2

3 · 18 = 12 eligible cards outside
of the hand of p0.

Using the same approach as above, we space out the 2
“honest” cards of the suggestion (i.e., C1 and C2) with the
remaining 10 eligible cards leaving 10/3 ≈ 3.33 cards on
each side of C1 and on each side of C2 as shown in Figure 2.

handOf(p0) � C1 � C2 �

Fig. 2. Expected Bluff Distribution

Therefore, we expect to be refuted at card 4.33. Because
each player’s hand consists of an expected 2 eligible cards, this
corresponds to a hypothetical player p2.17. Again, the ceiling
function shows us that this will tend toward player p3 refuting
the suggestion.

But what does it matter how many opponents are queried
before a suggestion is refuted? As in Section IV-A, let us
consider what information is gained by players, on average,
during a turn.

Without bluffing we expect, on average, that one opponent
will be unable to refute a suggestion before it is refuted by
the second (i.e., d1.58e). Thus, on average

• four players, including the player making the suggestion,
learn that one player does not have 3 cards,

• the first queried opponent learns nothing,
• the opponent that refutes the suggestion learns that one

other player does not have 2 cards (it already knew the
other opponent did not have the card they used to refute),

• and the player making the suggestion additionally learns
the location of 1 card, telling them that the card is not in
the hand of any of the other four players or the solution.

If we consider the information that a player (or the solution)
does not have a card to be a “unit” of information, then the
player making the suggestion acquires 7 units of information;
three opponents each acquire 3 and the opponent who refutes
acquires 2 for a total of 11.

When a player bluffs with a single card we expect, on
average, that two opponents will be unable to refute the
suggestion before refuted by the third (i.e., d2.17e). Thus, on
average

• two opponents learn that two players do not have these
3 cards,

• two queried opponents each learn that one other player
does not have the 3 cards,

• the opponent that refutes the suggestion learns that two
other players do not have 2 cards, and

• the player making the suggestion learns that two players
do not have 2 of the cards (since they themselves hold the
third), along with the location of 1 card that tells them
three remaining players and the solution do not have that
card.

By bluffing, the player making the suggestion now acquires
8 units of information; two opponents each acquire 6, two
queried opponents each 4, and the opponent who refutes
acquires 4 for a total of 24.

Thus bluffing a single card, on average, provides all five
opponents with more than twice the information they would
otherwise have obtained while providing little additional in-
formation to the player making the suggestion. Therefore,
contrary to conventional wisdom, we would expect bluffing
even a single card to be detrimental to the player that employs
this strategy.

C. Experimental Evidence

Our game-server allows us to make incremental changes in
the strategies used by our computational agents and assess the
cost or benefit of a change over many thousands of games to
detect subtle effects. We can play six-player games that are
a mix of bluffing and honest players to measure the effect of
bluffing in actual game-play.

1) Computational Agent Heuristics
We have chosen to experiment using a top-performing

computational agent developed by the authors.
This agent plays using the following general heuristics:
• If unknown, suggest the most likely suspect and weapon.
• If a card is known to be in the solution, suggest a card

we have or the card in the solution if we have none.
• Move to a viable9 room with the most viable rooms

adjacent to it; room movement rules are fairly complex,

9A “viable” room is a card that is not known to be in any player’s hand
and may still be part of the solution.



but the general heuristic is to move to a viable room we
don’t know any player has, with the most viable adjacent
rooms; if this is not possible then a variety of rules are
used to find the least bad non-viable room to move to.

• Refute a suggestion with a suspect or weapon card, if
possible, or a room if necessary.

The heuristic for refuting may seem quantitatively counter-
intuitive as there are only 6 suspects but 9 rooms so that
divulging a suspect card statistically gives more information
to the opponent about the solution than a room card. However,
this value is counter-balanced by the rules of the game that
require a player to be in the room they are suggesting. By
refuting with a suspect or weapon card, an opponent is forced
to leave and later reenter the room in order to suggest it again
— a diversion that can be costly in the short games that are
common when our computational agents compete. The special
nature of room cards will become readily apparent in our
evaluation of the experimental results that follow.

2) Competing Bluff vs. Honest
All experiments are conducted by playing 20,000 games

among the players. Players are randomly placed in a room to
start and turn order is randomly shuffled for each game.

Table I presents the results of our baseline experiment that
competes six honest players against one another.

Player Winning %
Honest 1 16.8
Honest 2 16.3
Honest 3 16.9
Honest 4 16.6
Honest 5 16.7
Honest 6 16.7

Mean of 16.7 ±.19

TABLE I
SIX “HONEST” PLAYERS

Analyzing the log of the games in Table I we also find that
• each game lasts only an average of 3.1 rounds (i.e., each

player makes ∼3 suggestions)
• the average number of players that are unable to refute the

initial suggestion of a game is 2.0 — showing good agree-
ment with our quantitative analysis in Section IV-B.10

Table II presents the somewhat surprising results from
introducing one agent that has been modified to always bluff
on their first turn by randomly choosing from their hand a
single suspect, weapon, or room.

Analyzing the logs from the games in Table II show that
• each game lasts an average of 3.3 rounds; the increase

coming from the longer games that begin with a bluffing
suggestion

• an honest player’s suggestion passes 2.0 opponents before
it is refuted

10Note that we confine ourselves to analyzing only the initial suggestion of
each game as all subsequent suggestions are 1) no longer random since the
agents have acquired some knowledge from previous turns and thus 2), the
probabilities we assumed in Section IV-B no longer hold.

Player Winning %
Bluffer 1 17.9
Honest 2-6 16.4 ±.16

TABLE II
FIVE “HONEST” PLAYERS AND ONE BLUFFER

• the bluffing player’s initial bluffing suggestion is refuted
after passing 2.7 opponents — a value slightly less than
3 since our computed expected value of player p2.17
refuting the suggestion from Section IV-B is close enough
to 2 that the second player is occasionally still able to
refute the suggestion. Players hold multiple cards and,
despite the strategy of laying out a sequence of viable
cards used in Section IV-B to derive the expected value,
there is no notion of capturing how many of their cards
a player “consults”; we can only observe the ordinal
number of the player that refutes the suggestion

However, the improved performance of a bluffing player is
counter to our hypothesis that, on average, bluffing provides
opponents with more information that should improve the
performance of the honest opponents!

In order to appreciate why the results in Table II defy
our expectations, we return to an observation we made at
the end of Section IV-C1 — that room cards are a different
category than suspect and weapon cards. Specifically, when
the player bluffs with a suspect or weapon card there is a
good chance that they will be shown a room card. Because
gathering information about rooms is made difficult by the
restriction that one can must occupy the room one suggests,
room knowledge is more difficult to acquire and therefor more
valuable than suspect or weapon knowledge. In fact, as noted
at the beginning of Section IV-C1, our agent avoids refuting
with room cards (though they are unlikely to have a choice
from the 3 cards held in a six-player game).

To refine our hypothesis, we re-ran our simulation twice:
1) with a player that bluffs a suspect or weapon card and 2),
with a player that only bluffs a room card. Table III shows that

Player Winning %
Bluffer 1 17.8
Honest 2-6 16.4 ±.17

TABLE III
FIVE “HONEST” PLAYERS AND ONE SUSPECT OR WEAPON BLUFFER

bluffing a suspect or weapon provides a strategic advantage.

Player Winning %
Bluffer 1 15.6
Honest 2-6 16.9 ±.26

TABLE IV
FIVE “HONEST” PLAYERS AND ONE ROOM BLUFFER

Table IV demonstrates that our initial hypothesis — bluffing
is detrimental to a player — is correct with one significant
qualification: Knowledge gained about room cards is far more
valuable than suspect and weapon cards and more than offsets



the cost of bluffing as demonstrated by Table III. When bluff-
ing with a suspect or weapon card, the player is fairly likely
to learn that the room is not in the solution. Conversely, when
bluffing with a room card, the player learns nothing about
rooms while providing opponents with information about what
players do not have the room used in the suggestion.

Since room knowledge would seem to be so valuable, a
strategy of bluffing with both the suspect and the weapon to
insure a room card is shown would seem useful. However,
Table V demonstrates that bluffing two cards appears to have
no additional benefit. This lack of improvement is understand-

Player Winning %
Bluffer 1 17.7
Honest 2-6 16.4 ±.28

TABLE V
FIVE “HONEST” PLAYERS AND ONE SUSPECT and WEAPON BLUFFER

able as it now takes over 3 players to refute the suggestion,
providing most opponents with additional information about
who does not have the suspect, weapon, and room while the
player making the suggestion learns only the location of a
room card.

V. CONCLUSIONS

We began with an intuitive and analytical analysis of
bluffing in Clue that suggested this commonly used strategy
was detrimental to winning the game as it provides additional
information to opponents that offsets the presumed benefit.

However, our game-play simulations demonstrated that
bluffing appeared to be beneficial. This unexpected outcome
lead to a more nuanced understanding that the cards used in
bluffing determine its usefulness — that owing to the unique
nature of room cards, bluffing to gain knowledge about rooms
by bluffing with suspects and weapons is beneficial while
bluffing with rooms is detrimental.

While we have examined the cost and benefit of bluffing
on the first turn, a number of open questions remain; among
them are determining

• whether bluffing on subsequent turns is useful, and
• if bluffing only one non-room card on the first turn is

optimal, can players benefit by assuming that opponents
are generally honest (i.e., they do not have the cards they
suggest) and especially never bluff with a room card

This last question relates to the rationale for bluffing in
Ferguson’s two-player game “Guess It!” — namely, to prevent
the exploitation of predictable “honesty.” Thus the question of
whether to bluff in Clue is even more nuanced and less obvious
when playing with more sophisticated game-playing agents.

Although our students’ computational agents largely share
the basic game-play heuristics described in Section IV-C1,
small differences in strategy, including when and what to bluff,
result in surprisingly wide differences in performance that lead
to a consistent and predictable ranking when these agents
compete over many thousands of games. This suggests that
the seemingly simple game of Clue is more nuanced than it
appears and we continue to explore Clue game-play strategies
as we refine our computational agent.
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