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THE ANTIMICROBIAL TRICLOCARBAN STIMULATES EMBRYO PRODUCTION IN THE
FRESHWATER MUDSNAIL POTAMOPYRGUS ANTIPODARUM

BEN D. GIUDICE and THOMAS M. YOUNG*
Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616, USA

(Submitted 11 May 2009; Returned for Revision 13 July 2009; Accepted 5 October 2009)

Abstract—Recent research has indicated that the antimicrobial chemical triclocarban (TCC) represents a new type of endocrine
disruptor, amplifying the transcriptional activity of steroid hormones and their receptors while itself exhibiting little affinity for these
receptors. The effects of TCC were studied in the freshwater mudsnail Potamopyrgus antipodarum. Specimens were exposed to
concentrations ranging from 0.05 to 10.5 mg/L dissolved TCC and were removed and dissected, and embryos contained within the brood
pouch were counted and classified as shelled or unshelled after two and four weeks of exposure. After four weeks, environmentally
relevant TCC concentrations of 1.6 to 10.5 mg/L resulted in statistically significant increases in the number of unshelled embryos,
whereas 0.2, 1.6, and 10.5 mg/L exposures significantly increased numbers of shelled embryos. The lowest observed effect concentration
(LOEC) was 0.2 mg/L, the no observed effect concentration (NOEC) was 0.05 mg/L; the 10% effective concentration (EC10) and
the median effective concentration (EC50) for unshelled effects were 0.5 mg/L and 2.5 mg/L, respectively. Given the widespread
occurrence of TCC in the environment and the effects shown at environmentally relevant concentrations, these results indicate that TCC
may be causing reproductive effects in the environment. Furthermore, the present study indicates that environmental risk from a new
class of endocrine-disrupting chemicals (EDCs) is both qualitatively and quantitatively similar to risk from existing classes of EDCs.
Environ. Toxicol. Chem. 2010;29:966–970. # 2009 SETAC
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INTRODUCTION

Many synthetic organic chemicals have been classified as

endocrine-disrupting chemicals (EDCs) because of their ability

to interact with and alter endocrine systems and cause adverse

health effects in organisms or their offspring. In humans,

there is evidence and concern that these chemicals may be

contributing to various types of cancer [1,2], abnormal timing of

the onset of puberty [3], and fetal abnormalities [4,5]. In

wildlife, effects range from feminization, hermaphroditism,

and intersexuality [6,7] to impacts on fertility and fecundity

[8,9] to behavioral effects [10], and, in some cases, complete

collapse of populations has been documented [11,12].

There is a large body of literature concerning EDCs with

estrogenic or androgenic potential [13]. Many of these studies

address the question of whether a single chemical alone acts as

an endocrine disruptor, generally as an agonist or antagonist to

one of the steroid hormone receptors but also through non-

receptor mediated modes of action. New research suggests that

the chemical triclocarban (TCC; Fig. 1), long suspected to

interfere with reproduction in rats and rabbits [14], exhibits a

novel form of endocrine disruption. Triclocarban alone exhibits

little or no activity toward steroid hormone receptors but

amplifies transcriptional activity of steroid sex hormones in

the estrogen and androgen receptors, both in human cell lines

[15]. In vivo, when added to a diet containing a high amount of

testosterone, it significantly increased male sex organ weight

relative to control diets, or those diets containing testosterone or

TCC alone in castrated rats [16].

Triclocarban was introduced to commerce in the United

States in 1957 and has been routinely added to cosmetics

and personal care products since then. Annual production

in the United States is estimated at between 500,000 and

1,000,000 lbs (225,000–450,000 kg) per year [17]. Triclocarban

is incompletely removed in wastewater treatment plants. Most

of it partitions into sludge, but some is also discharged in

effluent accompanying steroid hormones and other EDCs

[18,19], causing a potential risk to aquatic organisms down-

stream. It is estimated to be detectable in 60% of U.S. streams,

with mean and median concentrations of 213 and 109 ng/L,

respectively [18].

Given its characteristics as a new kind of endocrine disruptor

and its widespread occurrence in the aquatic environment, there

is a need to determine whether TCC poses a demonstrated

risk to aquatic species. The test species for these experiments

is the freshwater mudsnail Potamopyrgus antipodarum (Gastro-

poda, Prosobranchia, Hydrobiidae), commonly called the

New Zealand mudsnail, which has previously been used in a

whole-organism bioassay for estrogenic and androgenic endo-

crine-disrupting effects [20]. Native to New Zealand, it was

introduced to Europe in the mid-1800s [21] and to North

America in the late 1980s [22]. Unlike its native range, where

males are present and it reproduces sexually, in its invasive

range the species is almost exclusively female and is ovovivi-

parous and parthenogenetic [22].

The objectives of the present study are to determine whether

environmentally relevant concentrations of TCC impact repro-

ductive output in P. antipodarum and, if so, whether TCC
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causes effects that are distinguishable from the effects of

traditional estrogen receptor agonists in vivo. The hypothesis

is that TCC will increase reproductive output in a dose-depend-

ent manner. The reasoning behind this is that TCC acts by

enhancing the transcriptional activity of endogenous estrogens

present in the female, and this should lead to increased numbers

of embryos within the brood pouch, as has been found in

experiments with other exogenous estrogenic EDCs [23].

METHODS AND MATERIALS

Chemicals

Sea salt was obtained from Aquarium Pharmaceuticals.

Calcium carbonate, sodium bicarbonate, reagent alcohol,

acetonitrile, methanol, ethyl acetate, acetone, and acetic acid

were all obtained from Fisher Scientific and were of the highest

grade available. Triclocarban (3,4,40-trichlorocarbanilide, 99%

purity) was obtained from Aldrich. Deuterated triclocarban

(TCC-d7) and carbon-13-labeled triclocarban ([13C6]TCC)

were obtained from Cambridge Isotope Laboratories.

Experimental methods

Specimens of the freshwater mudsnail P. antipodarum were

collected from Putah Creek near Winters, California, USA, on

October 17, 2008 under the supervision of California Depart-

ment of Fish and Game staff. Aquatic vegetation was collected

in D-nets, and snails were removed and kept in river water in 1-

gallon buckets for transfer to the laboratory. Within 2 h, snails

were transferred into 10-gallon aquaria filled with artificial

freshwater (Milli-Q water plus added salts at a rate of 5 g

CaCO3, 5 g sea salt, and 0.5 g NaHCO3 per 10 gallons of water).

After 3 to 5 d of acclimation to laboratory conditions,

60 individuals with shell lengths greater than 3.0 mm were

transferred to each individual 1-L jar filled with 800 ml artificial

freshwater. The jars were aerated through glass pipettes to keep

dissolved oxygen near saturation.

Each jar was spiked with a solution of TCC dissolved in

reagent alcohol to achieve five nominal target aqueous TCC

concentrations (0.045, 0.14, 0.45, 1.4, 4.5, and 14.0 mg/L, in

triplicate). Reagent alcohol always represented less than

0.003% of the final volume of solution. The control blank

triplicates were also spiked with an equivalent volume of pure

reagent alcohol. A pilot study was conducted that contained

both water only and solvent controls, and results showed no

significant differences in number of embryos between the

treatments, suggesting that ethanol had no effect on embryo

numbers. Therefore, no water-only control was used during the

duration of this experiment. The pilot study also indicated that

large amounts of TCC (i.e., >10% of the total mass in the jar)

were partitioned into the snail biomass within 5 d. To keep

aqueous TCC concentrations relatively constant, water was

replaced and respiked at the initial concentration level in each

jar every 3 d.

The experiments were conducted at 14� 0.78C under a

light:dark rhythm of 16:8 h. Snails were fed ground TetraMin

(Tetra) every day or every other day at an approximate rate of

0.1 mg/d. At t¼ 0, 2, and 4 weeks, 15 specimens were removed

from each jar and narcotized for 1 h in 2.5% MgCl2 solution.

Photographs of the specimens were taken, and the length of the

shell was measured using image processing software. Shells

were cracked in a vice, and dissection took place under a

dissecting microscope. To measure reproductive output,

embryos were counted, making a distinction between those

with shells (i.e., older, more developed embryos) and those

without (i.e., newer embryos). The identical procedure was

performed at the same time points on 15 individuals that had

been kept in 10-L aquaria and was repeated for snails kept in

aquaria at 6 and 8 weeks as well. Mortality in the treatments was

recorded every 3 d, and dead snails were removed.

All data were analyzed using JMP 8.0 (SAS Institute). Using

absolute embryo numbers, means and standard errors were

calculated, followed by one-way ANOVA (n¼ 3) and compar-

ison of treatment means with the control using Dunnett’s

method (a¼ 0.05). All ANOVA assumptions were verified

through standard tests of residuals. Using percentage responses

relative to the control, nonlinear regressions were calculated

using a three-parameter logistic model and were used to

calculate a 10% effective concentration (EC10) and median

effective concentration (EC50) for each, where EC10 and

EC50 are the concentrations causing a 10 and a 50% increase

in embryo numbers relative to the solvent control, respectively.

All effects are referenced to time-weighted mean con-

centrations as determined analytically rather than nominal

concentrations.

Water chemistry

At day 1, 4, 10, 16, and 25, water samples were taken from

one randomly chosen replicate of each of the exposure con-

centrations immediately before and shortly after the water

renewal and respiking procedure. These samples were measured

for dissolved oxygen and pH, then analyzed for dissolved TCC

concentration. The pH was measured using a Mettler Toledo pH

meter. Dissolved oxygen was measured using a YSI dissolved

oxygen meter. At the same intervals, additional samples were

taken to measure nitrite/nitrate and ammonia with Aquarium

Pharmaceuticals test kits.

For determining dissolved TCC, samples were first acidified

to pH 2 using hydrochloric acid. Deuterated surrogate (TCC-d7)

was spiked into the samples, followed by solid-phase extraction.

The extraction was carried out on Waters Oasis HLB 6-cc

disposable cartridges on a Supelco Visiprep DL manifold. Each

cartridge was conditioned with 5 ml 75:25 ethyl acetate/acetone

mixture followed by 5 ml methanol and then 5 ml Milli-Q water.

Samples of 10 ml were loaded at a rate of between 1 and 2 ml/

min and then dried for 10 min at 40 mmHg. Cartridges were

eluted with 8 ml of 75:25 ethyl acetate/acetone. Eluates were

then evaporated to dryness under a gentle stream of nitrogen at

658C. Finally, extracts were redissolved in 200 ml or 1 ml of

Cl

Cl

NH

Cl

NH

O

Fig. 1. Chemical structure of triclocarban (TCC).



90:10 acetonitrile/Milli-Q water containing [13C6]TCC as an

internal standard.

Extracts were analyzed via liquid chromatography with

tandem mass spectrometry. Injection volume was 10 ml, and

separation was achieved on a Phenomenex Prodigy ODS 100A

100� 2.0 mm column at 408C. The binary mobile phase

consisted of 0.5 ml/min of 90:10 Milli-Q:acetonitrile with

2 mM acetic acid (A) and 50:50 methanol:acetonitrile with

10 mM acetic acid (B). The gradient was as follows: 20% B

rising to 80% B over 16.5 min, then rising to 100% B over

2.5 min, followed by 1 min at 100% B. Detection was achieved

using an Agilent (Santa Clara, CA) 1100 series LC/MSD ion

trap with electrospray ionization in negative mode and multiple

reaction monitoring. The drying gas flow rate was 12 L/min;

the drying gas temperature was 3508C; and the nebulizer

pressure was 35 psi. All other instrument parameters were

optimized for the detection of TCC.

The response was corrected by recovery of the surrogate

TCC-d7 and normalized to the response of the internal standard

[13C6]TCC. Calibration was via seven external standards, which

were analyzed before and after every set of samples and

the linear regression fit to the averages of each pair of responses.

A summary of the chemicals analyzed is shown in Table 1.

All data were analyzed using Bruker Daltonik DataAnalysis

v.2.1 software.

RESULTS AND DISCUSSION

Dissolved oxygen was always above 95% saturation, and pH

was 7.9� 0.4. Nitrite, nitrate, and total ammonia were always

below the detection limits of the tests, which were 0.1, 5,

and 0.5 mg/L, respectively. Dissolved TCC concentrations

decreased by 5 to 50% over the course of each 3- to 9-d period

between analyses. The rate of disappearance decreased over

each interval. Preliminary experiments indicated that significant

amounts of TCC partitioned into snail biomass within days, so

the decreasing rate of TCC disappearance is likely because

the applied concentrations were approaching equilibrium with

the TCC that had partitioned into the biomass of the snails.

Even so, time-weighted mean concentrations in general showed

good agreement with nominal concentrations; the concentra-

tions (in micrograms per liter) were determined to be 0.05 (0.04

nominal), 0.22 (0.14), 0.47 (0.45), 1.6 (1.4), 4.1 (4.5), and

10.5 (14.0). The highest measured concentration (10.5) was

probably lower than the nominal value (14.0) because of the

insolubility of TCC in the alcohol stock or the water.

Halden and Paull predict a solubility of TCC in water of

0.65 to 1.55 mg/L at 258C [18]; however, the actual solubility

is probably much lower, based on experience preparing aqueous

TCC solutions. In addition, this experiment was conducted at

148C, at which the solubility would be expected to be lower

than literature values referenced to 258C. Calculated recoveries

for the analytical procedure averaged 72%, with a standard

deviation of 18%.

After two weeks of exposure, the number of embryos

showed no significant differences from the controls. After four

weeks, significant increases were found for numbers of unsh-

elled, shelled, and total embryos, as shown in Figure 2. Expo-

sures of 1.6, 4.1, and 10.5 mg/L exhibited significantly elevated

numbers of unshelled embryos, reaching 217% of the control

numbers. Exposures of 0.2, 1.6, and 10.5 mg/L resulted in

significantly more shelled embryos, up to 167% of the control

numbers. Total embryos were significantly greater than controls

in snails exposed to 0.2, 1.6, 4.1, and 10.5 mg/L, up to 184% of

the controls. The LOEC was therefore 0.2 mg/L, and the NOEC

was 0.05 mg/L. The EC10 and EC50 for unshelled effects were

0.5 and 2.5 mg/L, respectively (r2¼ 0.59). The regressions did

not show good fit with the unusual dose–response curves for

shelled and total embryo numbers, so EC10 and EC50 were not

calculated. The most logical reason why numbers of unshelled

embryos showed the greatest increase is because, by four weeks,

most if not all unshelled embryos have likely been formed since

the start of the exposure and, therefore, best represent the effects

of exposure conditions.

No effects on shell length were detected. Shell length was

determined not to be a cofactor. If the exposures had been

extended to six or eight weeks, it is possible that effects on

embryo numbers would have been seen at even lower expo-

sures, following the trend that was seen in a previous study [23].

Exposures were limited to four weeks for the sake of expedience

and because preliminary experiments indicated that four weeks

was sufficient to detect the effects. Mortality was less than 10%

in all exposures except for one jar of 0.5 mg/L and one jar of

4.1 mg/L, for which mortality reached 20 and 17% by the end

of the four weeks, respectively. These jars had visible fungal

growth on their bottoms at between three and four weeks, likely

as a result of overfeeding, and this most likely led to higher

mortality.

Embryo numbers in all treatments, including the controls,

decreased substantially during the course of the experiment (see

Fig. 3). Levels found in snails housed in the aquarium declined

in a similar fashion, but at a slower rate. The results of a prior

pilot experiment that took place several months earlier indicate

a similar decline, suggesting that transferring the organisms to

laboratory conditions caused their reproduction to slow during

the course of the experiment. Anecdotal evidence from other

laboratories suggests this to be a common effect of bringing

wild-caught mudsnails into the laboratory.

Table 1. Selected analytical parameters

Chemical Triclocarban Deuterated triclocarban 13C-labeled triclocarban

Purpose Analyte Surrogate Internal Standard
Molecular wt 315.6 322.6 321.5
Precursor ion 313 320 319
Fragment 160 163 160
Instrument detection limit (mg/L) 0.35 0.10 n/a
Instrument quantitation limit (mg/L) 0.80 0.25 n/a
Limit of detection (ng/L) 10 2.9 n/a
Limit of quantitation (ng/L) 23 7.0 n/a



The specific ecological impact of the effects seen in this

experiment is not clear, but it is likely that, if the same effects

are occurring in the environment, populations would be

impacted. As Duft et al. [23] point out, increases in embryo

production during seasonal minima in the reproductive cycle

means more juveniles entering the environment at times when

the environment is unfavorable for survival. Furthermore,

limitations in the overall energy budget may then contribute

to lower fecundity and lower survival rates in the seasonal

maxima [23]. Multimonth exposures to examine effects of TCC

on survival and multigenerational exposures to examine effects

of populations in microcosms would enhance the understanding

of the expected effects in the environment.

Although many studies have examined acute and chronic

effects of TCC on aquatic organisms, few have found effects at

such low levels. The NOEC for chronic toxicity to Daphnia
magna has been reported at 0.5 to 1.0 mg/L. The most sensitive

endpoint for TCC on aquatic organisms found in the literature is

a NOEC of 0.101 mg/L for decreased numbers of young in

Americamysis bahia, a saltwater crustacean. The most sensitive

study results for mollusks found in the literature were reduced

viability (to 20% of control) in clam larvae at 10 mg/L TCC and

decreased larval length as low as 5 mg/L [24], 50 times higher

than the LOEC of 0.2 mg/L found in the present study. Although

TCC concentrations downstream of wastewater treatment

plants have only rarely been found to be above 5 mg/L, levels

above 0.2 mg/L are quite common. It is estimated that 30 to 40%

of samples described in the literature [18,25] are above the

LOEC for the present study.

Others have found effects similar to those of the present

study on embryo production in P. antipodarum when exposed

to the known environmental estrogens bisphenol A (BPA),

octylphenol (OP), nonylphenol (NP), and ethynylestradiol

(EE2) in both sediment and water [20,23]. In water, the NOECs
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Fig. 2. Effects of dissolved triclocarban (TCC) exposures on embryo
numbers of Potamopyrgus antipodarum at four weeks of exposure in
percentage of the solvent control (mean� SEM, n¼ 15) for unshelled
embryos (a), shelled embryos (b), and total embryos (c). The logistic
regression line for unshelled embryos is shown. �Significantly greater than
solvent controls at p< 0.05.

Fig. 3. Embryo numbers in the control and in an aquarium declined
substantially over the duration of the experiment. The decline in the aquarium
was slower and not as pronounced and leveled off at eight weeks.



have been determined to be 1 mg/L for BPA and OP and 5 mg/L

for NP [20]. The mechanism of action (MOA) of TCC on

P. antipodarum is not known, but it is possible that it acts

similarly to experiments with the mammalian estrogen

receptor in vitro [16], that is, amplifying the binding affinity

and consequently increasing the transcriptional activity of

naturally present estrogen to the estrogen receptor. However,

some evidence indicates that estrogenic compounds act via a

route different from binding to the vertebrate-like estrogen

receptor in mollusks [26]. In fact, it is not clear at this point

what the precise MOAs of estrogen analogues are in mollusks.

Although the possibility exists that TCC shares a common

MOA in mollusks with already identified estrogenic EDCs,

molecular evidence from vertebrate studies suggest that

the MOAs differ. If this is true, this experiment shows that

chemicals with different mechanisms of action produce nearly

identical results in vivo. It also highlights the need for both

in vitro and in vivo studies, especially for chemical-by-chemical

screening programs. In vivo studies may not distinguish

between different mechanisms of EDC, whereas in vitro studies

based on the current single chemical testing paradigm (e.g., Tier

1 of the U.S. Environmental Protection Agency’s Endocrine

Disruptor Screening Program) may miss potentially hazardous

EDCs.

The present study represents a first step in characterizing risk

to aquatic organisms of a new class of EDC. By showing that

TCC, a chemical that exhibits little to no affinity for the estrogen

receptor alone, causes reproductive effects that match those

caused by known estrogen receptor agonists, the present study

indicates that a chemical not addressed by the current paradigm

in EDC screening methodologies can exhibit equally problem-

atic environmental risk.
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