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Abstract
Aims: Species distributions are hypothesized to be underlain by a complex association 
of processes that span multiple spatial scales including biotic interactions, dispersal 
limitation, fine- scale resource gradients and climate. Species disequilibrium with cli-
mate may reflect the effects of non- climatic processes on species distributions, yet 
distribution models have rarely directly considered non- climatic processes. Here, we 
use a Joint Species Distribution Model (JSDM) to investigate the influence of non- 
climatic factors on species co- occurrence patterns and to directly quantify the relative 
influences of climate and alternative processes that may generate correlated re-
sponses in species distributions, such as species interactions, on tree co- occurrence 
patterns.
Location: US Rocky Mountains.
Methods: We apply a Bayesian JSDM to simultaneously model the co- occurrence pat-
terns of ten dominant tree species across the Rocky Mountains, and evaluate climatic 
and residual correlations from the fitted model to determine the relative contribution 
of each component to observed co- occurrence patterns. We also evaluate predictions 
generated from the fitted model relative to a single- species modelling approach.
Results: For most species, correlation due to climate covariates exceeded residual cor-
relation, indicating an overriding influence of broad- scale climate on co- occurrence 
patterns. Accounting for covariance among species did not significantly improve pre-
dictions relative to a single- species approach, providing limited evidence for a strong 
independent influence of species interactions on distribution patterns.
Conclusions: Overall, our findings indicate that climate is an important driver of re-
gional biodiversity patterns and that interactions between dominant tree species con-
tribute little to explain species co- occurrence patterns among Rocky Mountain trees.

K E Y W O R D S

Bayesian modelling, biotic interactions, joint species distribution model, SDM, species 
distribution, species sorting

1  | INTRODUCTION

While much research effort has recently been focused on resolving 
the drivers of species distribution patterns, considerable uncertain-
ties remain for many species and systems. Species distributions are 

underlain by a complex association of local and regional processes 
including biotic interactions, dispersal limitation and variation in popu-
lation dynamics driven by responses to fine- scale resource availability, 
topography, disturbance and broad- scale climate (Cazelles, Mouquet, 
Mouillot, & Gravel, 2015; Morueta- Holme et al., 2016; Serra- Diaz 
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et al., 2015). These processes may generate species diversity pat-
terns that vary across a wide range of environmental and ecological 
gradients spanning multiple spatial scales, complicating efforts to dis-
entangle the relative influences of underlying processes (Normand, 
Zimmermann, Schurr, & Lischke, 2014; Schurr et al., 2012).

Climate has traditionally been understood to be the dominant fac-
tor shaping species distributions (Woodward, 1987), as it correlates 
particularly well with species occurrence patterns observed at a com-
parable spatial resolution (Boucher- Lalonde, Morin, & Currie, 2012; 
Morin, Augspurger, & Chuine, 2007). Yet, widespread observations 
of species occurring in disequilibrium with climate have generated 
increased interest in the role of alternative processes in shaping 
species distributions (Araújo, Pearson, & Rahbek, 2005; Blois et al., 
2014). Species interactions have perhaps received the most atten-
tion in this regard, and have been the focus of significant research 
interest as a potentially overlooked driver of species distribution pat-
terns and climate disequilibrium (e.g. Araújo & Luoto, 2007; Araújo 
& Rozenfeld, 2014; Blois et al., 2014; Cazelles et al., 2015; Godsoe 
& Harmon, 2012; Kissling et al., 2012). Yet, significant uncertainty 
remains regarding the ability of species interactions, which typically 
operate at fine spatial resolutions, to exert independent effects on 
species distributions, which are typically evaluated over coarse spatial 
resolutions (~1 km2) and long temporal scales (e.g. correlated with 30- 
yr climate normal; Pearson & Dawson, 2003; Soberón & Nakamura, 
2009). Empirical investigations have thus far found limited evidence 
for a widespread effect of species interactions on distributions, and 
have generally demonstrated that interactions are most likely to af-
fect abundance patterns at local spatial scales without scaling up to 
affect occurrence patterns observed at coarser spatial resolutions 
(Boulangeat, Gravel, & Thuiller, 2012; Morueta- Holme et al., 2016; 
Rouget et al., 2001). However, other studies have demonstrated small 
improvements in species distribution models (SDMs) by incorporating 
potentially interacting species as model covariates (Araújo & Luoto, 
2007; Meier et al., 2010). Inference from studies employing the SDM 
approach is limited, as unidirectional relationships between pairs of 
interacting species may reflect a suite of underlying correlated pro-
cesses, such as missing environmental covariates to which the predic-
tor species responds (Clark, Gelfand, Woodall, & Zhu, 2014; Guisan & 
Thuiller, 2005; Kissling et al., 2012; Morueta- Holme et al., 2016; Wisz 
et al., 2013). These issues complicate valid inference and preclude 
general conclusions regarding the relative influences of species inter-
actions and climate on species distributions, and extend to inference 
regarding the influence of other community- level processes.

The effects of non- climatic processes may be better evaluated and 
identified by analysing species co- occurrence patterns rather than 
independent species distributions (Wisz et al., 2013). Community 
processes such as species interactions generate correlated responses 
among interacting species, although correlated responses may also 
arise from shared or opposing responses to environmental conditions 
such as climate. Positive species associations may reflect processes 
such as facilitation (le Roux, Virtanen, Heikkinen, & Luoto, 2012), 
shared climatic responses (Clark et al., 2014; Ovaskainen, Hottola, & 
Siitonen, 2010; Pollock et al., 2014) or significant dispersal barriers 

(Blois et al., 2014; Morueta- Holme et al., 2016), while negative species 
associations may arise due to competition (Godsoe & Harmon, 2012) 
or opposing responses to environmental conditions (Boulangeat et al., 
2012; Ricklefs & Jenkins 2011). Disentangling the factors underlying 
species co- occurrence patterns, which are observed at a scale that is 
consistent with inference on distributions, may enable quantification 
of the independent influences of climate and non- climatic processes, 
such as species interactions on species distributions (Ovaskainen 
et al., 2010; Pollock et al., 2014), and can be accomplished within a 
Joint Species Distribution Modelling (JSDM) framework.

The JSDM approach exploits residual correlation in species co- 
occurrence patterns to infer the strength of positive and negative in-
terspecific interactions. Species co- occurrence can be partitioned 
to represent that explained by species responses to climate, and co- 
occurrence left unexplained, representing residual dependence between 
species. When climatic influences are adequately described, residual 
correlation may indicate the independent influence of species interac-
tions (Clark et al., 2014; Ovaskainen et al., 2010; Pollock et al., 2014). 
In practice, directly accounting for all potential drivers of co- occurrence 
patterns is a difficult task. Processes including dispersal (Blois et al., 
2014; Urban, Zarnetske, & Skelly, 2013), responses to topographic 
variation (Serra- Diaz et al., 2015) and disturbance (le Roux, Virtanen, & 
Luoto, 2013) may generate correlated species responses that vary in-
dependently of climate. As with all correlative approaches, the JSDM 
approach is unable to quantify the precise contributions of every individ-
ual process that may contribute to modelled patterns. Yet, when inter-
preted carefully, JSDM may offer an improved approach to partitioning 
the effects of climate from those of non- climatic processes, with species 
interactions representing a particularly likely explanation for correlated 
species responses. Such approaches are necessary to guide future stud-
ies that will enhance understanding of the integrated impacts of local 
and regional processes on biodiversity patterns (Cazelles et al., 2015).

In this study, we evaluate co- occurrence patterns of ten domi-
nant canopy tree species in the US Rocky Mountains using a JSDM 
(Pollock et al., 2014) to disentangle co- occurrence patterns arising 
from climate responses and those indicative of species interactions. 
Rocky Mountain forests are characterized by steep environmental 
gradients and distinct elevational zonation of dominant canopy spe-
cies. While elevational zonation has been traditionally explained by 
climate (Rehfeldt, Crookston, Warwell, & Evans, 2006; Schrag, Bunn, 
& Graumlich, 2008), species interactions may give rise to similar pat-
terns and have not been sufficiently evaluated (Graham et al., 2014; 
Wiens, 2011). Additionally, climate envelopes of many of our focal 
species show substantial overlap (Bell, Bradford, & Lauenroth, 2014; 
Rehfeldt et al., 2006), suggesting that climatic gradients are likely not 
the sole driver of tree distribution patterns in this region. Due to the 
strong environmental gradients that characterize this study region, 
Rocky Mountain forests offer a unique opportunity to test hypotheses 
regarding the relative importance of abiotic and biotic factors across 
environmental gradients, and to clarify how these hypotheses extend 
to species distributions. Specifically, the importance of climate rela-
tive to competition is generally hypothesized to increase in regions of 
high abiotic stress (Tilman, 1982; Meier et al., 2010; Ettinger, Ford, & 



HilleRisLambers, 2011). We hypothesize that climate will be the dom-
inant driver of species co- occurrence patterns among high- elevation 
sub- alpine forest species, which meet their upper distribution mar-
gins at tree line and experience more extreme climatic conditions, 
while lower- elevation montane species will exhibit stronger residual 
correlation than sub- alpine species, indicating the independent influ-
ence of non- climatic processes such as biotic interactions on species 
co- occurrence patterns. We further hypothesize that leveraging the 
additional information provided by neighbouring species in the JSDM 
approach will improve predictions of species distributions relative to 
single species approaches.

2  | METHODS

2.1 | Tree co- occurrence data

Occurrence data, detailing presence and absence locations, were ex-
tracted from the U.S. Forest Service’s Forest Inventory and Analysis 
(FIA) database. The FIA database consists of plot- level forest data 
from a comprehensive survey of forest conditions across the conter-
minous United States; one field observation plot has been established 
for approximately every 25 km2 of forested land. These plots span all 
forest ownership types and provide the most comprehensive source 
of presence/absence data on forest species available in the United 
States (Smith, 2002). To protect plot integrity and private ownership, 
all publicly available FIA plot coordinates are perturbed within a 0.8- 
km radius of actual plot locations. Perturbed coordinates do not ap-
pear to reduce the performance of species distribution models relative 
to precise coordinates (Gibson, Moisen, Frescino, & Edwards, 2014).

This study made use of the most recent survey data (2003–2012) 
for all FIA field observation plots within the US states of Montana, 
Idaho, Utah, Wyoming, Colorado, New Mexico and Arizona (Figure 1). 
Presence and absence locations were extracted for ten commonly 
occurring tree species (Table 1): Abies lasiocarpa, Picea engelmannii, 
Pinus albicaulis, Pinus edulis, Pinus contorta, Pinus flexilis, Pinus ponder-
osa, Pseudotsuga menziesii, Populus tremuloides and Quercus gambelii. 
Selected species represent a range of shade tolerances, drought tol-
erances and habitat preferences and are adapted to a variety of dis-
turbance regimes. In total, 15,365 FIA plots were used to describe 
presence and absence locations.

2.2 | Climate data

Climate variables were selected to represent seasonal and annual 
temperature and precipitation, which have a strong demonstrated 
influence on tree species within our study region (Bell et al., 2014; 
Rehfeldt et al., 2006). Multiple subsets of these variables with a cor-
relation <0.7 were considered to minimize problems associated with 
collinearity (Dormann et al., 2013).

All climate data were extracted from the U.S. Forest Service 
Moscow Forestry Sciences Laboratory downscaled climate data set 
(MFSL; Rehfeldt, 2006). These data represent climate normals (1961–
1990) downscaled to a 30- arc sec resolution (~1 km2) using thin- plate 

spline methods (Rehfeldt, 2006). The extent of MFSL data span North 
America, with increased testing and application of data covering west-
ern North America (Rehfeldt et al., 2006). Both the temporal and spa-
tial resolution of these data were deemed consistent with the spatial 
resolution of FIA plot- level data and the temporal influence of climate 
on long- living trees. Topographic position, which can be an import-
ant influence on species occurrence patterns in the Rocky Mountains 
(Peet, 1981), was represented by the covariate TRASP, a linear trans-
formation of circular aspect (Evans, Oakleaf, Cushman, & Theobald, 
2014; Roberts & Cooper, 1989). Data used to calculate TRASP were 
derived from a 30- m USGS digital elevation model, resampled to a 
1- km2 grid using bilinear interpolation to remain consistent with the 
spatial resolution of climate and occurrence data.

2.3 | Modelling procedure

Species co- occurrence was modelled using the Joint Species 
Distribution Model (JSDM) approach of Pollock et al. (2014); see 
Pollock et al. (2014) for a more comprehensive model description and 
Appendix S1 for additional details. This approach uses a latent vari-
able formulation of a Bayesian hierarchical multivariate probit regres-
sion to predict multiple species distributions simultaneously and to 
disentangle the processes underlying co- occurrence patterns. In the 
JSDM formulation, continuous climate covariates are related to dis-
crete, binary presence/absence outcomes through a latent variable, 
which acts in place of a probit link function. The mean of this latent 
variable determines the probability of occurrence of a given species at 
a given location, and presence or absence can be inferred by invoking 
a threshold probability. We set occurrence thresholds individually for 
each species by calculating the probability that maximized the True 

F IGURE  1 The study area spans the US portion of the Rocky 
Mountain range and encompasses the states of Idaho, Montana, 
Wyoming, Utah, Colorado, Arizona and New Mexico. 15,265 FIA 
survey plots were used in this analysis; only locations where study 
species are present are shown. Maps are displayed using an Albers 
equal area conic projection



Skill Statistic (TSS), a measure of model discrimination and perfor-
mance that ranges from −1 to 1, with values >0 indicating better- than- 
chance discrimination (Allouche, Tsoar, & Kadmon, 2006). Species in 
the JSDM are correlated through a multivariate normal distribution, 
each dimension of which is characterized by independent latent vari-
able distributions related through a variance/covariance matrix. As in 
standard probit regression, the SD of each latent variable distribution 
is set to 1 so that the variance/covariance matrix is directly interpret-
able as a correlation matrix. Regression coefficients are re- scaled by 
dividing by the SD of the correlation matrix in order to be interpret-
able as regular probit regression coefficients.

Model selection was accomplished using a multi- staged approach. 
Due to the extremely high computational demands of this model, 
fully Bayesian model selection across a large suite of candidate cli-
mate covariates was not feasible. To initiate model selection, we fit 
models with multiple non- correlated sets of climate covariates. For 
each of these covariate sets, full models were fitted with quadratic 
terms and interaction terms for each covariate. Fitted models were 
compared using Posterior Predictive Loss (PPL), a model fit criterion 
that accounts for goodness- of- fit and penalizes for model complexity 
and is particularly suitable for use with hierarchical models (Gelfand & 
Ghosh, 1998). We selected the full covariate set that minimized PPL 
for further variable selection (Table S1.1 in Appendix S1). To reduce the 
computational demands of a fully Bayesian variable selection, we fit 
separate versions of the model with and without covariate interactions 
to evaluate the potential contribution of complex climate and topog-
raphy interactions. Both models produced nearly identical inference 
with regard to climatic and residual correlation, indicating that variable 
selection does not substantially influence conclusions regarding the 
relative contributions of climate vs. non- climatic processes (Appendix 
S1). The full model demonstrated substantially higher performance 
and was retained for further analysis. Fitted parameter estimates and 
convergence diagnostics for the full model are given in Appendix S3.

Model discrimination of the fitted JSDM was evaluated using 
TSS. The relative influences of climate and non- climatic processes 
were evaluated by comparing the strength of climatic vs. residual cor-
relation for each species. We also compared predictions made using 
the JSDM to those made without accounting for covariance among 
species (analogous to an SDM) to determine whether the informa-
tion contained in co- occurrence patterns can improve predictions 
of species distributions. Predictions were made only to forested 
areas, which were identified using the National Forest Type Dataset 
(Ruefenacht et al., 2008).

3  | RESULTS

The JSDM always showed better- than- chance discrimina-
tion (TSS > 0) and moderate performance for all species 
(0.411 ≤ TSS ≤ 0.691; Table 2). High- elevation sub- alpine species 
were predicted more accurately than lower- elevation montane 
species (Table 2). Imperfect discrimination was generally due to 
low specificity, corresponding to over- prediction of occurrence; 
the JSDM generally predicted broader geographic distributions 
than are represented by the occurrence data, particularly for low- 
elevation species such as two- needle pinyon and ponderosa pine 
(Table S1.2 in Appendix S1). For most species, the JSDM slightly 
outperformed the single- species approach, although differences in 
TSS, sensitivity and specificity between the two approaches were 
minimal (Table 2).

Climatic and residual correlations from the fitted model imply a 
stronger influence of climate on co- occurrence patterns than non- 
climatic processes. For nearly all species pairs, correlation due to cli-
mate covariates exceeded residual correlation substantially (Figure 2). 
High- elevation species tended to exhibit positive climatic correlations 
with one another, indicating shared climate responses, and negative 

Species Common name n (prevalence)

Latitude 
(decimal 
degrees)

Elevation 
(m a.s.l.)

Abies lasiocarpa Sub- alpine fir 2,622 (0.17) 33.6–48.9 624–3,718

Picea engelmanii Engelmann spruce 2,567 (0.17) 32.7–48.9 670–3,804

Pinus albicaulus Whitebark pine 511 (0.03) 42.1–48.9 1,531–
3,166

Pinus edulis Two- needle pinyon 3,362 (0.22) 32.1–41.6 1,157–
3,196

Pinus contorta Lodgepole pine 2,411 (0.16) 37.3–48.9 613–3,709

Pinus flexilis Limber pine 513 (0.03) 35.2–48.9 1,186–
3,709

Pinus ponderosa Ponderosa pine 2,816 (0.18) 32.0–48.9 426–3,147

Pseudotsuga menziesii Douglas- fir 4,290 (0.28) 31.4–48.9 426–3,521

Populus tremuloides Quaking aspen 1,587 (0.10) 32.4–48.9 638–3,718

Quercus gambelii Gambel oak 1,630 (0.11) 31.4–41.4 1,333–
2,987

Prevalence = number of occupied sites/total number of sites.

TABLE  1 Ten dominant Rocky 
Mountain tree species were selected for 
this study due to their prevalence and 
life- history traits. Selected species display 
strong elevational zonation, and most 
species span much of the latitudinal range 
of the study area



climatic correlations with lower- elevation species, indicating divergent 
climate responses (Figure 2a). Species with weaker climatic correlation 
(e.g. Quercus gambelii, Pinus ponderosa) were also predicted less accu-
rately (Table 2), indicating that covariates that were not considered 
in the model and that do not generate non- random co- occurrence 
patterns between modelled species may be important in defining the 
distributions of these lower- elevation species. In contrast to climatic 
correlations, residual correlations were negative for most species pairs, 
yet were generally weak relative to climatic correlation (Figure 2b). 
These patterns indicate that climate and non- climatic processes exert 
opposing pressures on co- occurrence and that non- climatic processes 
may contribute to species sorting along finer- scale environmental 
gradients.

Residual correlation only exceeded an absolute value of 0.5 in 
the case of Abies lasiocarpa and Picea engelmanii, two high- elevation 

sub- alpine species that regularly co- occur and were well predicted 
by the model (residual correlation = 0.573; Figure 2b). Inclusion of 
covariance for these species increases the probability of both spe-
cies occurring together or being absent at the same location and de-
creases the probability of species occurring separately (Figure S2.1 
in Appendix S2).

Predictions of species distributions generated from the JSDM 
(Figure S2.2 in Appendix S2) reflect model discrimination statistics; 
high- elevation species (Figure S2.2a–c, e, f in Appendix S2, Table 2) 
show more constrained and accurate distribution predictions than 
lower- elevation species (Figure S2.2d in Appendix S2, g–j, Table 2), in-
dicating that alternative factors that were not considered in the fitted 
model and that do not generate non- random co- occurrence between 
modelled species may be particularly important in shaping the distri-
butions of montane tree species.

TABLE  2 The model performed moderately for all species, although performance did not differ substantially when including covariance 
(JSDM) or without covariance (SDM). TSS values show better- than- chance discrimination for all species (TSS > 0). High- elevation species were 
generally estimated with greater accuracy than low- elevation species

Species

TSS Sensitivity Specificity TSS Sensitivity Specificity

With covariance Without covariance

Sub- alpine fira 0.647 0.929 0.718 0.638 0.924 0.714

Engelmann sprucea 0.577 0.890 0.687 0.562 0.875 0.687

Whitebark pinea 0.691 0.910 0.781 0.670 0.886 0.783

Two- needle pinyonb 0.565 0.884 0.681 0.535 0.866 0.669

Lodgepole pinea 0.537 0.918 0.619 0.542 0.924 0.618

Limber pinea 0.456 0.756 0.700 0.412 0.717 0.695

Ponderosa pineb 0.444 0.812 0.632 0.446 0.811 0.634

Douglas- firb 0.411 0.772 0.639 0.406 0.771 0.635

Quaking aspenb 0.432 0.788 0.644 0.433 0.786 0.647

Gambel oakb 0.421 0.827 0.594 0.420 0.826 0.594

aHigh- elevation species.
bLow- elevation species.

F IGURE  2 Environmental correlation (a) was consistently stronger than residual correlation (b), demonstrating that broad- scale species 
co- occurrence patterns can be largely explained by climate responses, yet correlations often acted in opposing directions, indicating that local 
processes may drive variation in co- occurrence patterns across finer spatial scales



4  | DISCUSSION

Our primary aim in this study was to evaluate the relative influences 
of climate and non- climatic processes, with particular emphasis on 
potential species interactions, on co- occurrence patterns of Rocky 
Mountain trees. The results from the fitted JSDM demonstrate that 
much of the variation in species co- occurrence patterns can be ex-
plained by shared or opposing responses to climate, with little dif-
ference in performance between the JSDM and the single- species 
approach. These findings do not support our initial hypothesis that 
the inclusion of additional species information would substantially 
improve predictions relative to a single- species approach. Residual 
correlations indicate that biotic interactions between these tree spe-
cies explain little variation in species distribution patterns that arises 
independently of climate, and also imply that alternative processes 
capable of generating correlated species responses are not significant 
drivers of distribution patterns among these species. While these find-
ings do not directly support our initial hypothesis regarding variation 
in the relative importance of climate and biotic interactions across el-
evational gradients, lower model performance among lower- elevation 
montane species does indicate that climate contributes more strongly 
to the distributions of high- elevation species, and alternative non- 
climatic processes may operate more strongly at lower elevations. 
Overall, our findings are in agreement with many other studies that 
have identified climate as an important driver of North American tree 
distributions and that have found limited evidence for a strong, in-
dependent influence of alternative processes including biotic interac-
tions (reviewed in Copenhaver- Parry, Shuman, & Tinker, 2017).

The factors underlying residual correlation cannot be precisely 
determined using the JSDM approach, and residual correlation may 
be explained by any process that generates correlated responses 
among species, such as biotic interactions or shared dispersal barri-
ers (Morueta- Holme et al., 2016; Pollock et al., 2014). While we only 
directly considered pair- wise interactions between dominant tree 
species in our modelling approach, the consistently weak residual cor-
relation relative to environmental correlation we observed between 
Rocky Mountain tree species indicates that no non- climatic process 
that can generate correlated responses between these species pairs, 
including species interactions, appears to have a consistent, significant 
influence on regional co- occurrence patterns independent of the in-
fluence of climate (Figure 2). Pair- wise species interactions have been 
repeatedly hypothesized to influence species distribution patterns at 
macroecological scales (Wiens, 2011; Wisz et al., 2013), although di-
rect empirical and mechanistic support remains relatively weak (e.g. 
Boulangeat et al., 2012; Gutiérrez, Snell, & Bugmann, 2016; Meier, 
Lischke, Schmatz, & Zimmermann, 2012; Morin et al., 2007; Rouget 
et al., 2001).

For Rocky Mountain tree species in particular, previous research 
has demonstrated that weak, local competitive interactions be-
tween species exert little influence on tree growth relative to climate 
(Copenhaver- Parry & Cannon, 2016). Disturbance, which is a ubiqui-
tous feature of Rocky Mountain forests, may further mediate the ef-
fects of local interactions on long- lived trees by initiating secondary 

succession before competitive exclusion can occur (Grime, 1973; 
Roxburgh, Shea, & Wilson, 2004). Weak residual correlation among 
species and the small effect of covariance on species co- occurrence 
may also be attributable to the large spatial extent over which these 
species were modelled. Rocky Mountain tree species exhibit a high 
degree of local adaptation across their ranges, generating heteroge-
neous community dynamics and environmental responses (Aitken, 
Yeaman, Holliday, Wang, & Curtis- McLane, 2008; Gray & Hamann, 
2013). For example, Pinus contorta, which consists of four subspecies, 
spans 4000 km in latitude and occupies environments with mean an-
nual temperatures ranging from −5 to 12°C. Local adaptation among 
Pinus contorta populations generates a broad range of environmental 
responses (Rehfeldt, Ying, Spittlehouse, & Hamilton, 1999). However, 
individual Pinus contorta populations generally exhibit low genetic di-
versity and narrow realized niches that are strongly impacted by the 
identity of co- occurring species, which vary across their range (Aitken 
et al., 2008; Peet, 1981; Rehfeldt et al., 1999). Heterogenous commu-
nity dynamics and environmental responses in Pinus contorta and other 
tree species may drive variation in co- occurrence patterns among pop-
ulations that is lost when species responses and co- occurrence rela-
tionships are averaged across a coarse scale and large spatial extent.

The strong positive climatic correlations identified for many spe-
cies pairs in this study, particularly those occupying similar elevation 
zones (e.g. montane species and sub- alpine species) imply shared 
climatic requirements. These findings agree with climate envelope 
models for many of these species, which show substantial envelope 
overlap across temperature and precipitation gradients (Bell et al., 
2014; Rehfeldt et al., 2006). Because trees share many resource re-
quirements, it may at first seem contradictory that these species can 
occupy climatically similar regions without interacting strongly. The 
shared environmental responses and lack of strong interactions identi-
fied in this study may result from the complex topography of the habi-
tats that these species occupy. Complex terrain influences in mountain 
landscapes, including cold air drainages, strong elevation gradients 
and fine- scale slope and aspect effects, may decouple regional climate 
from climate experienced in situ, generating extreme heterogeneity 
in local habitat (Dobrowski, 2011). Such heterogeneity coupled with 
slight differences in species environmental responses and habitat pref-
erences may drive fine- scale segregation in species distributions that 
are not detectable at the scale at which we evaluated co- occurrence 
patterns. For example, fine- scale topoclimatic variation in the 
Colorado Front Range has been shown to generate variable soil mois-
ture conditions that mediate the effects of regional climate on Pinus 
contorta and Pinus ponderosa, driving differing responses of these spe-
cies to moisture availability (Adams, Barnard, & Loomis, 2014). In fact, 
community- level studies have long documented fine- scale variation in 
Rocky Mountain tree species spatial patterns with topographic posi-
tion, most notably related to ridge lines and drainages (Peet, 1981). 
The existence of weak residual correlation among most species pairs 
in our study (Figure 2), along with the small effect of covariance on 
the probability of co- occurrence (Figure S2.1 in Appendix S2), may 
indicate that habitat features play an important role in defining the 
fine- scale co- occurrence patterns of Rocky Mountain tree species, but 



these effects are averaged- out when species co- occurrence patterns 
are evaluated across coarser spatial resolutions, such as in this analy-
sis. Similarly, weak residual correlation may indicate the averaging- out 
of species interactions across coarse spatial resolutions (Soberón & 
Nakamura, 2009). Multiple studies have found that inclusion of other 
species improves prediction of tree species abundance, but not occur-
rence (Boulangeat et al., 2012; Clark et al., 2014; Meier et al., 2012; 
Rouget et al., 2001), indicating that interactions may often be local 
in nature and insufficient in strength or consistency to impact broad- 
scale co- occurrence patterns.

Only two of the species evaluated in this study exhibited notewor-
thy residual correlation: Abies lasiocarpa and Picea engelmanii (residual 
correlation = 0.573; Figure S2.1 in Appendix S2). Climatic correlation 
for this species pair still exceeded residual correlation (climatic correla-
tion = 0.954; Figure 2), but these results suggest that positive interac-
tions in the context of succession might contribute to the broad- scale 
co- occurrence patterns of these species. Abies lasiocarpa and Picea 
engelmanii are well- known to be facilitated at the seedling stage in late 
seral stands of Populus tremuloides (Calder & St. Clair, 2012), Pinus flex-
ilis (Donnegan & Rebertus, 1999) and Pinus contorta (Kayes & Tinker, 
2012) via the provisioning of favourable microsites and nurse plant ef-
fects. Our model did not include seedling data, and was thus unable to 
capture a strong facilitative relationship between Abies lasiocarpa–Pi-
cea engelmannii, and Pinus flexilis, Pinus contorta and Populus tremuloi-
des, which are likely absent in late successional stands dominated by 
spruce and fir. Yet, the positive residual correlation between spruce 
and fir may in actuality reflect simultaneous facilitation of seedlings by 
adult individuals of early seral species during initial stages of spruce–
fir stand development. This is consistent with theoretical evidence 
that demonstrates that strong positive interactions, such as mutual-
ism and facilitation, are more likely to generate visible effects across 
coarse spatial resolutions and broad spatial scales than competition 
(Araújo & Rozenfeld, 2014).

Empirical species distribution modelling approaches, including 
the JSDM, are limited by their lack of ecological mechanism (Ibáñez 
et al. 2006). As a result, JSDM climatic correlations might also repre-
sent biotic interactions that are themselves strongly correlated with 
climate. Even if this were the case, substantial variation in species dis-
tributions is still left unexplained by the JSDM approach, implying that 
other processes that do not generate correlated species responses 
should be addressed. A variety of alternative factors could generate 
uncorrelated responses between species including interactions with 
species not included in the JSDM (e.g. herbivores, microbial symbi-
onts, pests, biotic dispersal vectors; Van der Putten, Macel, & Visser, 
2010; Lankau, Zhuk, & Ordonez, 2015; Katz & Ibáñez, 2017), inter-
action modifications and diffuse competition (Inouye & Stinchombe, 
2001;  Gilman, Urban, Tewksbury, Gilchrist, & Holt, 2010), dispersal 
(Woodall et al., 2009; Zhu, Woodall, & Clark, 2012), human land use 
(Pearson, Dawson, & Liu, 2004; Thuiller, Araújo, & Lavorel, 2004) or 
disturbance (le Roux et al., 2013). Disturbance may be an overlooked 
but particularly important driver. Wildfire shapes landscape vegetation 
patterns in western North American forests and its suppression during 
the 20th century may have decoupled some tree species distributions 

from climatic controls. Fire suppression has had a particularly strong 
influence on Pinus ponderosa (King, Bachelet, & Symstad, 2013; Mast, 
Veblen, & Linhart, 1998) and Pinus edulis (Baker & Shinneman, 2004; 
Miller & Tausch, 2001) distributions and may explain the lower perfor-
mance of the JSDM for low- elevation species in this study, and asso-
ciated low specificity, or over- prediction of species occurrence (Figure 
S2.2 in Appendix S2).

Overall, our findings bring into question the hypothesized im-
portance of pair- wise species interactions for contributing to broad- 
scale distribution patterns in Rocky Mountain forests. However, we 
note several important limitations to inference including the inability 
of the JSDM to identify the precise factors contributing to residual 
correlation. We add to this the necessity of fitting the model with a 
limited number of covariates to eliminate problems associated with 
collinearity and to achieve computational feasibility. It is possible that 
some species may respond to a more complex suite of climate covari-
ates than those included in the model, particularly wide- ranging, low- 
elevation species (Brotons, Thuiller, Araújo, & Hirzel, 2004; McPherson 
& Jetz, 2007). Collinearity is an important and nearly ubiquitous fea-
ture of ecological systems and places a notable constraint on correl-
ative modelling techniques that is not easily overcome (Freckleton, 
2011). However, the JSDM performed as well, and in most cases, 
slightly better than univariate models (analogous to an SDM approach; 
Table S1.2 in Appendix S1), and also performed similarly to regres-
sion tree and spline models, which can accommodate collinearity and 
complex functional forms (Copenhaver- Parry, Albeke, & Tinker, 2016). 
Therefore, these limitations are not expected to compromise our main 
findings. Taken as a whole, our findings indicate the overriding impor-
tance of climate on distributions and co- occurrence patterns of Rocky 
Mountain tree species, yet also highlight the need to consider multi-
ple non- climatic processes, including those that may generate uncor-
related responses, particularly among lower- elevation species. While 
the question of biotic interactions is by no means entirely resolved, 
our findings indicate that clarity regarding the underlying drivers of 
species distributions, especially in Rocky Mountain forests, may be 
gained by focusing investigations on alternative non- climatic drivers 
that have not received as much attention as pair- wise species interac-
tions, such as disturbance, dispersal and variation in climate responses 
across life stages (Copenhaver- Parry et al., 2017). Such clarity is nec-
essary to enable informed and robust predictions of the response of 
forests to continuing environmental change.
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