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Abstract
Aim: The rate and magnitude of climate‐induced tree range shifts may be influenced 
by range‐wide variation in recruitment, which acts as a bottleneck in tree range dy‐
namics. Here, we compare range predictions made using standard species distribu‐
tion models (SDMs) and an integrated metamodelling approach that assimilates data 
on adult occurrence, seedling recruitment dynamics, and seedling survival under both 
current and future climate, and evaluate the degree to which information provided by 
seedling data can improve predictions of range dynamics.
Location: The interior west region of the United States.
Time period: 1990–2015.
Major taxa studied: Five widespread conifer tree species.
Methods: We used a previously published metamodelling framework to combine in‐
formation from SDMs of adult tree occurrence and sub‐models describing seedling 
recruitment dynamics and seedling survival into a single set of predictions for the 
probability of occurrence for each species. The integrated framework links sub‐mod‐
els to a SDM to generate cohesive predictions that consider information and uncer‐
tainty contained in all datasets. We then compared predictions from the integrated 
model to SDM predictions.
Results: Integration of seedling information served primarily to improve characteriza‐
tion of model uncertainty, particularly in regions where recruitment may be limited 
by temperatures that exceed seedling tolerance. Integration constrained response 
curves very slightly across most climate gradients, particularly across temperature 
gradients. These differences were primarily attributable to the isolated effects of 
temperature on seedling survival and not to recruitment dynamics.
Main conclusions: Our results indicate that range‐wide variation in recruitment both 
now and in the future is most uncertain along the edges of occupied regions, which 
increases uncertainty in projections of future species occurrence along range mar‐
gins. Overall, the broad‐scale climatic dependence of the regeneration niche appears 
weaker than that of the adult climatic niche, and this enhances uncertainty in predict‐
ing range‐wide responses of these species to climate change.
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1  | INTRODUC TION

Rapid range shifts have been observed for many species in recent 
decades and are expected to increase under continued climate 
change (Boisvert‐Marsh, Perie, & De Blois, 2014; Kelly & Goulden, 
2008; Monleon & Lintz, 2015). In many cases, range shifts appear to 
follow complex dynamics that are largely inconsistent with expecta‐
tions based on warming as the primary driver, and recent research 
efforts have emphasized the need to better understand the com‐
plex suite of mechanisms that underlie range dynamics (Alexander 
et al., 2018; Rumpf, Hulber, Zimmermann, & Dullinger, 2018; Wason 
& Dovciak, 2017). Range dynamics ultimately arise from variation 
in demographic rates (e.g., growth, mortality, recruitment) that de‐
termine population growth rates and dictate the environments 
in which a species can persist (Normand, Zimmermann, Schurr, & 
Lischke, 2014; Schurr et al., 2012). Understanding the demographic 
processes that underlie range dynamics is important and necessary 
for addressing a wide variety of ecological problems, such as biodi‐
versity decline, and for accurately forecasting species range shifts in 
response to climate change.

Variation in demographic rates across populations and envi‐
ronmental gradients can generate disequilibrium between species 
occurrence and broad‐scale environmental conditions such as cli‐
mate due to source–sink population dynamics, recruitment limita‐
tion, and time‐delayed extinction (Holt, 2009; Jackson, Betancourt, 
Booth, & Gray, 2009; Svenning & Sandel, 2013). These effects may 
be particularly pronounced in long‐lived plants such as trees, which 
rely upon successful dispersal, colonization and establishment over 
multiple, long generations to shift their ranges (Renwick & Rocca, 
2015; Talluto, Boulangeat, Vissault, Thuiller, & Gravel, 2017; Zhu, 
Woodall, & Clark, 2012). There is general agreement that trees will 
respond to warming by shifting their ranges upward in elevation and 
latitude, and indeed this pattern has been observed across many 
forest systems (e.g., Lenoir, Gegout, Pierrat, Bontemps, & Dhote, 
2009; Murphy, VanDerWal, & Lovett‐Doust, 2010; Smithers, North, 
Millar, & Latimer, 2018). Yet, variation in the rate and magnitude and, 
in some cases, the direction of range shifts indicates that variation 
in underlying demographic responses to a complex suite of climate 
variables that may not tightly covary with temperature, such as 
precipitation, may be an important determinant of how tree range 
shifts occur (e.g., Bykova, Chuine, Morin, & Higgins, 2012; Crimmins, 
Dobrowski, Greenberg, Abatzoglou, & Mynsberge, 2011; Serra‐Diaz 
et al., 2015). In particular, the rate and magnitude of range shifts 
may be influenced by range‐wide, climate‐induced variation in re‐
cruitment, which acts as a critical bottleneck in tree range dynamics 
(Canham & Murphy, 2016; Conlisk et al., 2017; Corlett & Westcott, 
2013).

Juveniles of many tree species show reduced survival and high 
environmental sensitivity relative to adults, and thus occupy nar‐
rower niches, particularly along moisture gradients (Bykova et al., 
2012; Grubb, 1977; Jackson et al., 2009; Smithers et al., 2018). 
Indeed, in comparisons of adult and juvenile tree distributions, 

seedlings have often been found to occupy a climatic subset of the 
adult distributional area, with limited colonization beyond range 
margins and in certain core areas (Bell, Bradford, & Lauenroth, 2014; 
Murphy et al., 2010; Zhu et al., 2012). Within species ranges, juve‐
niles are largely restricted to sites beneath existing forest canopies, 
particularly in water‐limited systems, underscoring the sensitivity of 
juveniles to moisture limitation and the differences in climatic toler‐
ance between juveniles and adults (Bell et al., 2014; Dobrowski et al., 
2015; Smithers et al., 2018). The restricted biotic and abiotic envi‐
ronments under which recruits can successfully establish may drive 
variation in recruitment rates across a species’ range that is incon‐
sistent with its shifting climate envelope (reviewed in Copenhaver‐
Parry, Shuman, & Tinker, 2017).

At the same time, transplant experiments beyond range margins 
for a variety of temperate tree species generally indicate that range 
margins correspond not only with bioclimatic limits on establish‐
ment, but also with insufficient seed production (Hargreaves, Samis, 
& Eckert, 2014; Lee‐Yaw et al., 2016). Likewise, other lines of evi‐
dence indicate that low adult density and correspondingly low seed 
availability at high elevation range margins contribute to recruit‐
ment limitation and lagged range shifts (Conlisk et al., 2017; Kroiss & 
HilleRisLambers, 2015). Recruitment dynamics, therefore, are influ‐
enced by both the environmental conditions under which juveniles 
can establish and survive, and in which adults can survive and re‐
produce – collectively termed the regeneration niche (Grubb, 1977). 
Characterizing the climatic dependence of the regeneration niche 
requires an integrated understanding of both juvenile and adult cli‐
matic niches and recruitment rates across a broad gradient of climatic 
conditions (Kroiss & HilleRisLambers, 2015). As such, species distri‐
bution models that characterize only the climatic niches of adult trees 
ignore important limitations on demographic processes including re‐
cruitment, and static comparisons of adult and seedling distributions 
do not provide an integrated understanding of the conditions under 
which propagules can be both produced and successfully establish.

In this study, we apply a recently developed, integrated meta‐
modelling framework (Talluto et al., 2016) to directly assimilate ju‐
venile and adult tree climatic niches and recruitment rates into a 
cohesive framework for projecting current and future ranges. We 
assimilate data from experimental and observational datasets of 
seedlings and adults of five dominant tree species in the Rocky 
Mountain region of the western US, and project future ranges while 
accounting for underlying variation in recruitment in response to 
climate. Our approach directly integrates information on the con‐
ditions under which seedlings can continually establish and persist 
with patterns of adult occupancy, enabling inference directly and 
simultaneously informed by data spanning multiple life stages. Our 
specific aims were to compare species range predictions made using 
a standard species distribution modelling (SDM) approach and our 
integrated approach under both current and future climate, and to 
determine whether the additional information provided by integrat‐
ing seedling data can be used to generate more robust predictions of 
species range dynamics.



2  | METHODS

2.1 | Data

Adult occurrence records and seedling abundance records were 
extracted from the U.S. Forest Service Forest Inventory and 
Analysis (FIA) database for the five most abundant and broadly dis‐
tributed tree species in the Interior West region of the US, which 
encompasses the states of Arizona, New Mexico, Colorado, Utah, 
Wyoming, and Montana (Figure 1). The five focal species (Abies lasio‐
carpa, Picea engelmannii, Pinus contorta, Pinus ponderosa, Pseudotsuga 
menziesii) dominate the majority of forested area in the study re‐
gion (Copenhaver‐Parry & Bell, 2018; Peet, 1981). Shade tolerance 
generally declines from high to low elevations, with higher‐elevation 
montane species (A. lasiocarpa and Picea engelmannii) exhibiting high 
shade tolerance and lower elevation montane and woodland spe‐
cies (Pinus contorta, Pinus ponderosa, Pseudotsuga menziesii) exhibit‐
ing moderate to low shade tolerance (Niinemets & Valladares, 2006). 
We utilized all Phase 2 FIA plots (visited ground plots) within the 
study region in which data were collected according to the stand‐
ardized sampling design; plots that utilized other sampling designs in 
either of the most recent two inventories were excluded. While FIA 
data are not restricted to naturally regenerating forests, plantations 
make up only a negligible portion of the forested area within our 
study area (Chen, Pan, Hayes, & Tian, 2017), and thus all forested 
plots inventoried according to the standardized design were deemed 
acceptable for inclusion in our analysis. The standardized FIA sam‐
pling design includes measurement of all adult trees [diameter at 
breast height (DBH) ≥ 12.7 cm] within four 7.3‐m‐radius subplots, 
and tabulation of all seedlings (diameter at root collar ≤ 2.54 cm and 
height ≥ 15.24 cm) within four 2.1‐m‐radius microplots nested within 
subplots (O'Connell et al., 2015). While these size thresholds corre‐
spond poorly with age due to dramatic variation in seedling growth 
rates across species and growing conditions, age–height relation‐
ships from other studies suggest that seedlings of slower‐growing 
species such as A. lasiocarpa, Picea engelmannii, and Pseudotsuga 

menziesii may range from 8 to 35 years old, while seedlings of faster‐
growing species including Pinus contorta and Pinus ponderosa may 
range from 4 to 25 years old (Urza & Sibold, 2007). We summed data 
from the four subplots and four microplots to estimate occurrence 
and abundance of adults and seedlings at the plot level.

The occurrence of adult trees indicates long‐term persistence 
of species within a given location, but seedling occurrence may 
fluctuate over time in response to transient dynamics or pulsed re‐
cruitment patterns (Renwick & Rocca, 2015). Thus, evaluating the 
occurrence or abundance of seedlings at a single point in time in rela‐
tion to climate may not realistically reflect the climatic regeneration 
niche, which may be better characterized as the climatic conditions 
under which seedling recruitment can be sustained over time (Holt, 
2009). To better capture sustained recruitment within our models, 
we utilized seedling count data from the two most recent repeat FIA 
inventories to estimate the change in seedling counts over time at 
each plot. For most of the study area, only two FIA inventories have 
been completed. These data record variation in seedling counts over 
time in response to the full suite of environmental influences that 
may affect recruitment including climate, density dependence, and 
microenvironment, and were used to parameterize the recruitment 
dynamics sub‐model (see Section 2.2). Further, these data may re‐
flect environmental influences on any stage of recruitment, includ‐
ing dispersal, germination, growth, and establishment.

To incorporate additional mechanistic information into the in‐
tegrated model and to better inform environmental relationships, 
we integrated an additional dataset characterizing the specific re‐
lationship between temperature and seedling survival. To isolate 
the effect of temperature on seedling survival, experimental data 
on seedling survivorship across a 6° range of mean annual tempera‐
ture were used to parameterize the seedling survival sub‐model 
(see Section 2.2). These data come from a series of experimental 
common gardens established in Colorado in 2014 to isolate the ef‐
fects of temperature on tree seedling performance while minimizing 
differences in moisture, light, soils, topography, exposure, and local 

F I G U R E  1   A topographic depiction 
of the study area, which encompasses 
the interior west region of the US and 
includes the states of Idaho, Montana, 
Wyoming, Utah, Colorado, Arizona, and 
New Mexico [Colour figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com


adaptation (see Carroll, Knapp, & Martin, 2017 for full details). One‐
year‐old seedlings were planted within each garden, and growth and 
survivorship were monitored monthly for 3 years. Seedlings were 
watered throughout the experiment to reduce transplant shock and 
mortality.

Climate data for model fitting were extracted from the U.S. 
Forest Service Moscow Forest Sciences Laboratory (MFSL) down‐
scaled gridded climate dataset, available at a 30‐arc second res‐
olution (Rehfeldt, 2006). We utilized a 30‐year climate normal 
(1961–1990) for a suite of temperature and precipitation variables 
representing established seasonal and annual climatic controls on 
the occurrence of the focal species (Table 1; Copenhaver‐Parry & 
Bell, 2018). Variable selection for each focal species was based on 
the model selection approach described in Copenhaver‐Parry and 
Bell (2018). Briefly, multiple sets of seasonal and annual temperature 
and precipitation variables with a correlation of < .7 were considered 
in the modelling approach and were evaluated in models with a va‐
riety of interaction structures. All models evaluated included main 

effects and various combinations of quadratic effects and bivariate 
interactions. Models with different combinations of covariates and 
interaction structures were compared based on true skill statistic 
(TSS; Allouche, Tsoar, & Kadmon, 2006), specificity, and sensitivity. 
The covariate combinations and interaction structures that maxi‐
mized performance across these metrics were retained for subse‐
quent modelling efforts. Ultimately, four climate covariates along 
with various subsets of their interactions and quadratic terms were 
used to model all of the species (Table 1).

Downscaled future climate projections from the 
HADCM3 (Hadley Centre Coupled Climate Model version 3) cou‐
pled climate model were used for model projections (Pope, Gallani, 
Rowntree, & Stratton, 2000). Projections from both the A2 and B2 
emissions scenarios were used to contrast range projections under 
scenarios with high (A2) and intermediate (B2) levels of economic 
development and population growth (Nakicenovic, 2000). All pro‐
jected data were for the nominal 11‐year period surrounding 2090 
(2085–2096).

TA B L E  1   The final selected climate covariates included degree days less than 0°C (DD0), the temperature differential between mean 
maximum temperature in the warmest month and mean minimum temperature in the coldest month (TDiff), growing season precipitation 
(April–September; GSP), and winter precipitation (mean annual precipitation minus GSP; WINP), along with various combinations of quadratic 
terms and bivariate interactions. Out‐of‐sample area under the receiver operating curve (AUC) estimates generated for the naïve and 
integrated models are based on mean model predictions and U.S. Forest Service Forest Inventory and Analysis (FIA) adult occurrence data

Species Main effects Quadratic terms Interaction terms

AUC

Naïve Integrated

Abies lasiocarpa DD0 DD02 DD0 × WINP .9304 .9303

TDiff WINP2 GSP × TDiff

GSP GSP × WINP

WINP

Picea engelmannii DD0 DD02 DD0 × TDiff .9200 .9200

TDiff WINP2 DD0 × WINP

GSP GSP × TDiff

WINP GSP × WINP

Pinus contorta DD0 DD02 DD0 × TDiff .8880 .8880

TDiff TDiff2 DD0 × WINP

GSP GSP2 GSP × WINP

WINP

Pinus ponderosa DD0 DD02 DD0 × TDiff .8746 .8761

TDiff TDiff2 GSP × DD0

GSP GSP2 DD0 × WINP

WINP GSP × TDiff

TDiff × WINP

GSP × WINP

Pseudotsuga menziesii DD0 DD02 DD0 × TDiff .8577 .8586

TDiff TDiff2 GSP × DD0

GSP DD0 × WINP

WINP GSP × TDiff

GSP × WINP



2.2 | Modelling approach

We used the framework outlined in Talluto et al. (2016), which oper‐
ates by first constructing an SDM using occurrence and environmental 
data (hereafter “naïve SDMs”, indicating that they are informed only 
by presence–absence data), and by then further informing the param‐
eters of this model using sub‐models that relate species performance 
to the same variables used to calibrate the SDM. Here, we build SDMs 
using occurrences of adult trees, and then further constrain these 
with sub‐models using data for seedlings at two different scales, con‐
sidering (a) seedling survival using smaller‐scale experimental results 
and (b) seedling recruitment dynamics, using data from the FIA. These 
sub‐models are constructed using the same or similar environmental 
variables as the SDM – for example, seedling survival was modelled 
as a function of degree days less than 0°C (see below), and this vari‐
able was also present in the SDMs. The final model is constructed as 
a hierarchical Bayesian model incorporating the information from all 
sub‐models; thus, it is possible to use the environmental relationships 
from the sub‐models as informative priors when parameterizing the 
relationship between the probability of occurrence and the environ‐
ment for the SDM. The end result of this process is an integrated SDM 
(sensu Talluto et al., 2016) that predicts the probability of occurrence 
for each species while incorporating information and uncertainty 
from all three sources. Below, we describe the three sub‐models in 
detail, and the procedures used to account for the change in scales 
between the sub‐models and the integrated SDM.

2.2.1 | Species distribution model

We used a generalized linear model (GLM) with Bernoulli errors and 
a logistic link function to model the probability of occurrence of adult 
trees as a function of climate, following a standard SDM approach. 
Although other models can provide greater flexibility for SDMs (e.g., 
generalized additive models [GAMs], random forests, etc.; Elith & 
Leathwick, 2009), we chose a simpler approach to minimize model 
overfitting due to the ultimate goal of using the model to generate 
future predictions. Moreover, the GLM structure has the additional 
advantage of being straightforward for incorporating multiple data 
sources (Talluto et al., 2016). We fit a separate model for each spe‐
cies, which took the form:

where φi is the probability of presence of species i, αi is an intercept 
parameter, and βi and γi are vectors of slope parameters (hereafter 
we drop the i subscript for simplicity; all equations are species spe‐
cific unless otherwise noted). The Es are matrices of climate covari‐
ates, which can either be informed by additional sub‐models as in the 
case of the integrated models or uninformed as in the naïve SDM. 
Climate covariates (Table 1) were standardized prior to model fitting 
to aid model convergence and comparison of coefficients. Model 
likelihood was assessed using the FIA adult tree presence/absence 
data:

where y is a vector of presences and absences. For the naïve mod‐
els, we used simple regularizing priors (Gelman, Jakulin, Pittau, & Su, 
2008):

For the integrated model, parameters relating to informed co‐
variates (i.e., β) were instead modelled using a hierarchical like‐
lihood function integrating information from the two additional 
datasets. This was accomplished by simulating presence–absence 
datasets yrecruitment and ysurvival following Talluto et al. (2016). The 
procedures for how these datasets were generated are specified in 
the sub‐model sections below. These simulated datasets were then 
incorporated into the model assuming a pseudo‐likelihood similar to 
that used for the naïve SDM:

The survival sub‐model had an identical structure.

2.2.2 | Recruitment dynamics sub‐model

We fit a simple discrete‐time model based on the Ricker model for dis‐
crete population dynamics (Ricker, 1954) to estimate the population 
growth rate of seedlings using the seedling counts from FIA repeat 
survey data. Following the approach of Thuiller et al. (2014), re‐ar‐
rangement and log‐transformation of the classic Ricker model was 
used to model the change in seedling counts between surveys as a 
function of the intrinsic population growth rate and seedling density:

where r̂  is the estimated log change in population size among survey 
periods, �r is the standard deviation of r̂ , Nt is the seedling count at 
the initial survey, Nt+1 is the seedling count at the second survey, r is 
the intrinsic population growth rate, and b is a density dependence 
parameter. We further modelled the intrinsic population growth rate 
r as a function of climate, such that:

where ar is the recruitment model intercept, βr is a slope vector for 
the recruitment model, Einformed is the same covariate matrix used in 
the SDM, and Δt is the number of years between surveys. All param‐
eters used regularizing priors as in the naïve SDM.

log it(ϕi)=αi+βiEinformed+γiEuninformed

y∼Bernoulli(ϕ)

α∼Cauchy(0,5)

β∼Cauchy(0,2.5)

γ∼Cauchy(0,2.5)

yrecruitment∼Bernoulli(ϕrecruitment)

ϕrecruitment=α+βEinformed

r̂= r+b×Nt

log

(

Nt+1

Nt

)

∼Normal(r̂,𝜎r)

r=exp

(

αr+βrEinformed

Δt

)



Because the recruitment model was fit at a different scale than 
the SDM, for the purpose of integration it was necessary to make 
a theoretical assumption as to how seedling recruitment dynamics 
relate to occurrence. We used the concept of the fundamental niche 
as the environmental conditions under which a species can maintain 
positive intrinsic growth rates (Holt, 2009) to link the recruitment 
dynamics sub‐model and the occurrence data by using the sub‐
model to predict recruitment rates at the same locations as the cal‐
ibration occurrence data. Thus, for each Markov chain Monte Carlo 
(MCMC) iteration we computed a value of r at each location in the 
FIA dataset and then assigned a presence (1) where r > 0 or absence 
(0) where r <= 0 in the simulated yrecruitment dataset.

2.2.3 | Seedling survival sub‐model

We used a second sub‐model to estimate the probability of seedling 
survival as a function of temperature based on experimental seed‐
ling data. This model was also fit as a logistic regression, with binary 
survival across the duration of the experiment as the response vari‐
able and the temperature‐related variables from the naïve models as 
well as seedling size as covariates:

where s is a vector of binary survival observations, ρ is the survival 
probability, and αs and βs are intercept and slope parameters, re‐
spectively, for the survival model. Because seedlings were watered 
during the experiment to minimize transplant shock‐induced mortal‐
ity, no precipitation effects were included in the survival sub‐model.

To generate simulated presence and absence data to inform 
the SDM within the integrated model, we selected a simple 
threshold model to translate survival probability to occurrence; 
thus, the simulated presence–absence dataset ysurvival was set to 1 
when ρ exceeded this threshold and to 0 otherwise. Our approach 
to linking these data was based on the assumption that species 
occurrence relates to the environments under which seedlings can 
survive. Occurrence thresholds were determined empirically for 
each species by calculating the survival probability that maximized 
sensitivity and specificity. This provided a semi‐independent 
means of relating the survival data to the FIA data by selecting 
thresholds that provided the best empirical fit to FIA‐observed 
presences and absences.

2.2.4 | Calibration of integrated model

We calibrated the integrated models in a Bayesian framework using 
a MCMC algorithm. The integrated model estimates the posterior 
distributions of model parameters based on simultaneous evaluation 
of the probability of all three occurrence datasets (i.e., observed oc‐
currences used in the naïve model as well as simulated occurrence 
datasets from the sub‐models) given the metamodel and model priors 
and allows uncertainty from all sub‐models to propagate to the final 

predictions (Talluto et al., 2016). This uncertainty propagation includes 
uncertainty from the integration process itself, as the simulated oc‐
currence datasets from the recruitment dynamics and survival sub‐
models enter the model as random variables that vary as a function of 
model parameters, and thus are re‐generated at each MCMC iteration.

All models were fit using the LaplacesDemon package in R (R 
Core Team, 2017; Statisticat, LLC, 2017). The naïve model and sub‐
models were fit using random‐walk metropolis, and the integrated 
model was fit with automated factor slice sampling. Convergence 
was evaluated based on the acceptance rate, Monte Carlo standard 
error, effective sample size, Hellinger distance as a measure of sta‐
tionarity, and visual inspection of trace plots. All models were run for 
at least 100,000 iterations and thinned to every 50th value. The first 
50% of samples were discarded as burn‐in, and the remaining 50% 
were retained for further analysis and inference. Models were fit on 
a random 50% subset of available data, and the remaining data were 
reserved for model evaluation.

2.3 | Model evaluation and prediction

Naïve and integrated models were evaluated by computing the area 
under the receiver operating curve (AUC) using the AUC package 
in R (Ballings & Van den Poel, 2013). AUC evaluates the ability of a 
model to discriminate between presences and absences without in‐
voking a probability threshold (Manel, Williams, & Ormerod, 2001). 
We calculated out‐of‐sample AUC using the posterior predictive 
means generated with reserved data.

Naïve and integrated models were used to predict the current oc‐
currence probability of the focal species across the study region based 
on gridded climate data. Predictions were made using the joint posterior 
distribution of each model. Prediction uncertainty was characterized by 
the standard error of the mean of the posterior predictive distribution. 
All predictions were mapped within 100 km of current forested area, 
which represents a generous estimation of the maximum distance tree 
species might be capable of migrating by 2090 (Clark, 1998; Corlett & 
Westcott, 2013). Naïve and integrated model predictions under both 
current and future climate were compared based on comparison of re‐
sponse curves, visual inspection of mapped predictions, differences in 
uncertainty, and a comparison of the geographic overlap and distances 
between the geographic centres for mapped predictions. Geographic 
overlap was calculated using Schoener's D statistic, a measure of the 
proportional geographic overlap of two predictions as an index ranging 
from 0 to 1 (Roder & Engler, 2011). Geographic centres of predicted 
distributions were calculated using the COGravity function within the 
SDMTools package in R (VanDerWal, Falconi, Januchowski, Shoo, & 
Storlie, 2014).

3  | RESULTS

3.1 | Model validation

Model fit based on out‐of‐sample estimates of AUC was high for all 
models and species (AUC = .858–.930), indicating that both the naïve 

s∼Bernoulli(ρ)

logit(�)=αs+βsEinformed



F I G U R E  2   Response curves for Abies lasiocarpa (a), Picea engelmannii (b), Pinus contorta (c), Pinus ponderosa (d), and Pseudotsuga menziesii 
(e) across the temperature variables used in the naïve (purple) and integrated (turquoise) models. Lines represent posterior mean predictions, 
and the coloured shaded regions around each line represent 95% credible intervals. The grey region corresponds with the range of data over 
which the models were fitted [Colour figure can be viewed at wileyonlinelibrary.com]
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and integrated models were effective at discriminating between 
presences and absences in the adult occurrence data (Table 1). 
Differences in AUC between naïve and integrated models were neg‐
ligible for all species, despite the additional seedling data that were 
included in the integrated models.

3.2 | Climatic niches

Differences between integrated and naïve response curves were 
minimal across all species. However, response curves for the inte‐
grated models did capture a narrower set of suitable climatic con‐
ditions compared to those from the naïve models (Figure 2; see 
Supporting Information Appendix S1: Figures S1.1–S1.5). In nearly 
all cases, coefficient estimates from the naïve models were slightly 
smaller in magnitude than coefficient estimates from integrated 
models (Figure 3), indicating that the additional information provided 
by seedling recruitment and survival data served to constrain the cli‐
matic niches slightly. The most notable differences in climatic niches 
occurred across temperature gradients (Figure 2). In general, higher‐
elevation species showed the most divergent response curves be‐
tween the naïve and integrated models across a degree‐days < 0°C 

gradient, with naïve response curves shifted slightly toward warmer 
temperatures. Lower‐elevation species response curves diverged 
more notably with temperature differential. Temperature differ‐
ential responses predicted by the integrated and naïve models di‐
verged substantially for Pinus ponderosa (Figure 2d); for this species, 
the naïve model predicted an upward response curve, while the 
integrated model predicted a curvilinear response curve across the 
range of sensible temperature differentials, with the probability of 
presence increasing toward larger temperature extremes. For all 
species and response curves, there was a high degree of overlap in 
uncertainty between the naïve and integrated models.

Comparisons of main effects coefficients from sub‐models 
demonstrate that constraints to climatic niches within the integrated 
model arise predominantly from the response of seedling survival to 
temperature variation, while recruitment dynamics estimated using 
observational field data were largely invariant to climatic variation 
across all climate variables (Figure 3). In most cases, recruitment dy‐
namics sub‐model parameters did not differ significantly from zero 
(Figure 3). In contrast, climate coefficients estimated by the seedling 
survival sub‐models showed several significant temperature effects 
(Figure 3). Specifically, the effect of temperature differential was 

F I G U R E  3   Coefficient estimates 
from the naïve model, integrated model, 
seedling recruitment sub‐model, and 
seedling survival sub‐model for the 
four main climate effects: degree days 
<0°C (a), temperature differential (b), 
growing season precipitation (c), and 
winter precipitation (d). Points represent 
posterior means, and bars correspond 
with 95% credible intervals. Only 
temperature effects were included in the 
seedling survival sub‐model [Colour figure 
can be viewed at wileyonlinelibrary.com]
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significant and large for Pinus ponderosa, A. lasiocarpa, and Pinus con‐
torta, although these effects were also estimated with broad credi‐
ble intervals indicating a high degree of uncertainty.

3.3 | Current range predictions

Consistent with response curves, current range predictions from 
the naïve and integrated models differed minimally for all species 
(Figures 4 and 5; Supporting Information Appendix S1: Figures S1.6–
S1.8). In all cases, geographic overlap in mapped range predictions 
between models was nearly 100% (99.91–99.97%). Geographic cen‐
tres did not differ significantly between naïve and integrated models 
for any species (Supporting Information Appendix S1: Table S1.1). 
Across all species, differences in uncertainty in mapped predic‐
tions were positive, indicating that integrated model predictions had 
greater uncertainty than naïve model predictions. Differences in un‐
certainty were generally greatest in areas along the edges of occu‐
pied regions, such as in low‐elevation regions for subalpine species 

and in higher‐elevation regions for montane and woodland species, 
and in the southernmost regions of the study area (Figures 4 and 
5; Supporting Information Appendix S1: Figures S1.6–S1.8). These 
uncertainty differences were magnified for A. lasiocarpa, for which 
uncertainty in integrated model predictions was substantially higher 
than uncertainty in naïve model predictions across the forested re‐
gion of the study area and particularly along southern and eastern 
range margins (Figure 5).

3.4 | Future range predictions

Future range predictions under 2090 projected climate indi‐
cate range contractions within the study area for high‐elevation 
montane and subalpine species (A. lasiocarpa, Picea engelmannii, 
Pinus contorta), and range expansions for lower‐elevation species 
(Pseudotsuga menziesii, Pinus ponderosa; Figures 4 and 5; Supporting 
Information Appendix S1: Figures S1.6–S1.8). Predicted range 
shifts are more severe under the A2 scenario than the B2 scenario 

F I G U R E  4   Pinus ponderosa range predictions for the naïve model, integrated model, and the difference between posterior prediction 
standard errors (Uncertainty) under current climate (a), predicted 2090 climate under the A2 emissions scenario (b), and predicted 2090 
climate under the B2 emissions scenario (c). The geographic centres of the predicted distributions are marked (yellow diamonds). Predictions 
are mapped across the interior west region of the US [Colour figure can be viewed at wileyonlinelibrary.com]
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for all species. The small differences in range predictions between 
naïve and integrated models are magnified under future climate, 
particularly for lower‐elevation species such as Pinus ponderosa 
(Figure 4). In the northern portion of Pinus ponderosa’s range, the 
integrated models predict a lower probability of presence than the 
naïve models and less total occupied area. This corresponds with 
key differences in temperature differential response curves be‐
tween naïve and integrated models.

Differences in geographic centres between naïve and integrated 
models remained non‐significant under future climate (Supporting 
Information Appendix S1: Table S1.1). Geographic overlap declined 
slightly, but remained at nearly 100% for all species under both 
scenarios (B2: 99.67–99.89%; A2: 99.12–99.87%). Differences in 
uncertainty between naïve and integrated models were also mag‐
nified under future climate for all species and were always positive, 
indicating greater uncertainty in integrated model predictions than 
naïve model predictions (Figures 4 and 5; Supporting Information 
Appendix S1: Figures S1.6–S1.8). Trends in prediction uncertainty 

differences across species and between the naïve and integrated 
models were similar between current range predictions and future 
range predictions.

4  | DISCUSSION

4.1 | Impacts of recruitment on range predictions

Our comparison of naïve and integrated models reveals few major 
qualitative differences in response curves or range predictions 
when accounting for recruitment. Overall, integration of seedling 
information served primarily to improve characterization of model 
uncertainty, especially in regions where seedling recruitment may 
be limited due to temperatures that exceed seedling tolerance, and 
constrained most response curves very slightly, particularly across 
temperature gradients. These differences were primarily attribut‐
able to the effects of temperature on seedling survival and not to re‐
cruitment dynamics estimated from field inventories (Figures 2 and 

F I G U R E  5   Abies lasiocarpa range predictions for the naïve model, integrated model, and the difference between posterior prediction 
standard errors (Uncertainty) under current climate (a), predicted 2090 climate under the A2 emissions scenario (b), and predicted 2090 
climate under the B2 emissions scenario (c). The geographic centres of the predicted distributions are marked (yellow diamonds). Predictions 
are mapped across the interior west region of the US [Colour figure can be viewed at wileyonlinelibrary.com]
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3). These findings are consistent with other studies that have failed 
to identify strong climate signals in seedling abundance patterns 
across species ranges (Canham & Murphy, 2016; Dallas & Hastings, 
2018), highlighting the importance of both habitat suitability and the 
abundance of adult trees and seedlings in quantifying the regenera‐
tion niche.

Investigations of the decoupling of tree population dynamics, 
seedling abundance, and tree density from climate in temperate for‐
ests (Canham & Murphy, 2016; Dallas & Hastings, 2018; Thuiller et al., 
2014) suggest that seedling abundance patterns may be poorly pre‐
dicted by climate in part due to density dependence. Conspecific den‐
sity dependence appears pervasive among temperate forest trees and 
has been demonstrated to have strong impacts on recruitment dy‐
namics (Zhu, Woodall, Monteiro, & Clark, 2015). Negative conspecific 
density dependence may reduce the abundance of seedlings and/or 
slow recruitment dynamics when species are abundant. Conversely, 
positive conspecific density dependence may increase seedling abun‐
dance and/or accelerate recruitment dynamics when seedling densi‐
ties are low (Zhu et al., 2015). In both cases, resultant recruitment 
dynamics would be characterized by intrinsic growth rates that devi‐
ate from expectations based on climatic suitability. These density‐de‐
pendent effects may be particularly pronounced within the strongly 
successional forests in the western US and are a likely mechanism 
to explain the non‐significant response of recruitment dynamics to 
range‐wide variation in climate observed in our study.

Another potential explanation for the decoupling of recruit‐
ment dynamics from climate could relate to the climatic buffering 
effect of the forest canopy, which modulates the climatic condi‐
tions experienced by seedlings, particularly those of shade‐tol‐
erant species that establish beneath dense canopies (De Frenne 
et al., 2013; Lenoir, Hattab, & Pierre, 2017). This effect can gen‐
erate microclimate conditions that deviate substantially from the 
coarse‐scale climate characterized by the gridded climate data 
utilized in our models. Few studies have directly evaluated the 
influence of microclimate on range‐wide variation in recruitment 
due primarily to limited availability of climate data at sufficiently 
fine spatial scales, but available investigations suggest that esti‐
mates of survival may be higher when microclimate is considered 
due to a dampening of climatic extremes, and that the strength 
of this effect is strongly related to canopy density (De Frenne et 
al. 2013; Kroiss & HilleRisLambers, 2015; Lenoir et al., 2017). At 
the same time, existing evidence suggests that non‐climatic mi‐
crosite conditions including edaphic factors and competition may 
have stronger effects on recruitment than microclimate (Kroiss 
& HilleRisLambers, 2015). Future efforts to characterize range‐
wide recruitment dynamics would likely benefit from spatially 
extensive, detailed environmental data at scales most relevant to 
seedlings.

The effects of temperature on seedling survival as estimated 
within the seedling survival sub‐models generally indicate improved 
seedling survival for high‐elevation species in cooler environments, 
which are also associated with smaller temperature extremes, and 
potentially higher survival of lower‐elevation species in warmer 

environments, consistent with the geographic distributions of these 
species (Figure 3). However, climate effects on seedling survival 
were estimated with high uncertainty in the survival sub‐model. 
Uncertainty is likely partially attributable to the smaller sample size 
associated with the experimental seedling dataset; as evidence of 
this, the degree of uncertainty in coefficient estimates increased as 
species abundance in the dataset declined. Simultaneously, seedlings 
of these species may exhibit low temperature sensitivity, resulting in 
broad and uncertain temperature responses. Indeed, physiological 
responses to temperature variation in the common garden data uti‐
lized in the survival sub‐model showed low temperature sensitivity 
in conifer seedlings (Carroll et al., 2017).

The broad uncertainty in seedling survival responses explains 
the increased uncertainty associated with integrated model pre‐
dictions relative to naïve model predictions, particularly along ele‐
vational and latitudinal range margins (Figures 4 and 5, Supporting 
Information Appendix S1: Figures S1.6–S1.8). Variation in uncer‐
tainty differences across species can primarily be explained by the 
degree to which temperature responses estimated by the seedling 
sub‐models deviate from those estimated by the naïve SDM; where 
the models agree, uncertainty is reduced, and where the mod‐
els diverge, uncertainty increases. Uncertainty differences were 
greatest for shade‐tolerant species like A. lasiocarpa (Figure 5). 
For this species, seedlings – which establish beneath the canopy 
– experience substantially different temperature and moisture
conditions than those that characterize the regional climate, which 
may explain the greater divergence in estimated temperature re‐
sponses between the naïve SDM and the seedling sub‐models than 
estimated for less shade‐tolerant species.

The spatial patterns of uncertainty differences have important 
implications for anticipating climate‐induced range shifts, as track‐
ing climate change would require species to increase recruitment at 
and beyond cool range margins and to exhibit recruitment declines 
at warm range margins (Corlett & Westcott, 2013; Kelly & Goulden, 
2008; Monleon & Lintz, 2015). Comparisons of adult and juvenile cli‐
matic niches within our study region have failed to provide evidence 
of climate tracking, but instead have identified patterns consistent 
with recruitment limitation at both warm and cool range margins 
(Bell et al., 2014; Dobrowski et al., 2015). This finding may be ex‐
plained by the restricted climatic niche of seedlings relative to adult 
conspecifics, owing to the greater sensitivity of seedlings to mois‐
ture stress, temperature extremes, and shading (Canham & Murphy, 
2016; Dobrowski et al., 2015; Jackson et al., 2009). This pattern is 
also consistent with observations of pronounced migration lags of 
up to c. 130 km in latitude or 60 m in elevation among tree species 
in the Rocky Mountains (Gray & Hamann, 2013). Similarly, our re‐
sults demonstrate that areas along the edges of occupied regions 
are characterized by the greatest uncertainty in occurrence proba‐
bilities both now and in the future. Collectively, these findings sug‐
gest that considerable uncertainty exists in the ability of recruitment 
increases beyond cool range margins to compensate for expected 
recruitment declines at warm range margins, which indicates the po‐
tential for substantial future migration lags.



4.2 | Evaluation of modelling approach

Our model evaluation results (Table 1) and range predictions (Figures 
4 and 5, Supporting Information Appendix S1: Figures S1.6–S1.8) 
indicate that the integrated models successfully discriminated be‐
tween presences and absences in the adult occurrence data while si‐
multaneously integrating information from the seedling sub‐models 
and propagating uncertainty from the sub‐models to the integrated 
model. The primary benefit of integration in this context was to im‐
prove characterization of uncertainty in current and future range 
predictions. In locating regions of uncertainty under both current 
and future climates, our integrated models represent a substantial 
improvement in applied utility over traditional niche modelling ap‐
proaches, which are often limited by poor characterization of un‐
certainty and limited predictive accuracy due to a reliance on purely 
correlative environment–occurrence relationships and a lack of eco‐
logical mechanism (Addison et al., 2013; Dormann, 2007; Dormann 
et al., 2012). Indeed, incorporating demographic information into 
SDMs has been shown to improve niche estimates and predictive 
accuracy in a variety of integrated or hybrid modelling approaches 
(Merow et al., 2014; Pagel & Schurr, 2012; reviewed in Fletcher et al., 
2019). However, these improvements are only realized in contexts 
where demographic and occurrence information agree; in contexts 
where demography is weakly or negatively correlated with species 
occurrence probability, integrating these divergent sources of infor‐
mation will generally serve to increase uncertainty in estimates and 
predictions (Talluto et al., 2016). This latter phenomenon has been 
consistently identified in widespread forest tree species, for which 
demography and occurrence probabilities appear to be decoupled, 
particularly in populations at carrying capacity in which alternative 
processes, such as density dependence, may better explain demo‐
graphic rates (Bin et al., 2016; Dallas & Hastings, 2018; Thuiller et 
al., 2014). While our modelling approach did not directly account for 
density dependence or other non‐climatic factors that may influ‐
ence carrying capacities, spatial evaluation of model uncertainty can 
be used to identify regions and populations where species may not 
respond to climate change in the manner expected based upon oc‐
currence–environment relationships – a task for which SDMs based 
only on presence–absence data are inadequate. These regions may 
indicate target locations for activities intended to better anticipate 
and manage the effects of climate change including demographic 
monitoring and assisted migration (Aitken, Yeaman, Holliday, Wang, 
& Curtis‐McLane, 2008; McLachlan, Hellmann, & Schwartz, 2007).

At the same time, this modelling approach and resultant infer‐
ences have several important limitations. First, the mean coefficient 
estimates resulting from the integrated model deviate little from 
the estimates of the naïve model, indicating that the posterior es‐
timates of the integrated models were driven largely by the adult 
occurrence data with little contribution from the seedling data. The 
limited contribution of the seedling data can be explained by (a) the 
non‐significant responses of seedling recruitment dynamics to cli‐
mate, and (b), the small sample size associated with the experimental 
seedling survival data. Variation in sample sizes and the amount of 

information contained within different datasets present a limitation 
for integrated modelling approaches such as the one applied here, 
and the best approach for accommodating data disparity remains 
unclear (Fletcher et al., 2019). A variety of weighting approaches 
may be utilized, but they may contribute to an undesirable trade‐off 
between bias and precision. While beyond the scope of this current 
study, future applications of this model and other integrated models 
would benefit from a clearer understanding of the impact of weight‐
ing approaches on integrated models (Fletcher et al., 2019).

Second, our models did not account for a number of potentially 
important ecological processes that are likely to impact range dy‐
namics under future climate including biotic interactions, seed dis‐
persal, and adaptation. While competitive interactions between 
tree species have been demonstrated to have limited influence on 
species occurrence patterns within our study region (Copenhaver‐
Parry & Bell, 2018), seedling recruitment may be particularly sen‐
sitive to density dependence. Our models likely reflect this effect 
in non‐significant responses of recruitment dynamics to climate, yet 
substantial changes to forest structure in the future either through 
disturbance, land‐use change, or climate‐induced mortality events 
may alter the density dependence landscape in a way that modifies 
recruitment–climate relationships (Dobrowski et al., 2015; Honnay 
et al., 2002; Kroiss & HilleRisLambers, 2015; Liang, Dubeneck, 
Gustafson, Serra‐Diaz, & Thompson, 2018). Similarly, adaptation is 
a likely response to climate change among our focal species, which 
exhibit strong local adaptation in traits along temperature gradients, 
and may shift the climatic niches of seedlings, which will be the first 
to display phenotypes consistent with climate change‐induced ad‐
aptations (Aitken et al., 2008). Both of these processes violate the 
assumption of stationary relationships with climate and have the 
potential to generate future range dynamics that deviate from the 
predictions of the integrated models (Hampe, 2004; Kubisch, Degen, 
Hovestadt, & Poethke, 2013). These limitations are not easily over‐
come with existing data, and ultimately require a level of caution and 
humility when interpreting and applying model predictions, particu‐
larly under future climate (Dormann, 2007).

Our results are also limited by the availability of repeat survey data. 
Our recruitment dynamics sub‐model was calibrated on repeated mea‐
surements from two time points at each inventory plot separated by 
an average of 5 years, which may be insensitive to the high tempo‐
ral variability of masting, disturbance, and climate in western forests 
(Renwick & Rocca, 2015; Serra‐Diaz et al., 2015). However, our use of 
a discrete‐time recruitment dynamics model based on two time points 
likely represents an improvement over previous characterizations of 
seedling niches based upon a single time point (e.g., Bell et al., 2014; 
Dobrowski et al., 2015; Monleon & Lintz, 2015), and our modelling ap‐
proach provides a flexible framework within which to integrate addi‐
tional data as new seedling inventory data become available.

4.3 | Conclusions

The rate and magnitude of tree range shifts under future climate 
are likely to depend strongly upon the climatic dependence of the 



regeneration niche. In western forests, tree species are already lag‐
ging their climatic niches (Gray & Hamann, 2013), and comparisons 
of adult and juvenile niches indicate the potential for range contrac‐
tions (Bell et al., 2014). Our results indicate that range‐wide variation 
in recruitment both now and in the future is most uncertain along 
the edges of occupied regions, which increases uncertainty in pro‐
jections of future species occurrence along range margins. Further, 
recruitment dynamics when considered at this scale appear to be 
only weakly related to coarse‐scale climate, and the manner in which 
non‐climatic factors will alter recruitment dynamics under future cli‐
mate remains unclear. Overall, our findings suggest that the broad‐
scale climatic dependence of the regeneration niches of western 
forest trees may be weaker than that of the adult climatic niche, and 
that this enhances uncertainty in predicting range‐wide responses 
of these species to climate change.
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