
Masthead Logo Digital Commons @ George Fox University

Faculty Publications - School of Education School of Education

2018

Computational Thinking Equity in Elementary
Classrooms: What Third-Grade Students Know
and Can Do
Yune Tran
George Fox University, ytran@georgefox.edu

Follow this and additional works at: https://digitalcommons.georgefox.edu/soe_faculty

Part of the Education Commons

This Article is brought to you for free and open access by the School of Education at Digital Commons @ George Fox University. It has been accepted
for inclusion in Faculty Publications - School of Education by an authorized administrator of Digital Commons @ George Fox University. For more
information, please contact arolfe@georgefox.edu.

Recommended Citation
Tran, Yune, "Computational Thinking Equity in Elementary Classrooms: What Third-Grade Students Know and Can Do" (2018).
Faculty Publications - School of Education. 206.
https://digitalcommons.georgefox.edu/soe_faculty/206

http://www.georgefox.edu/?utm_source=digitalcommons.georgefox.edu%2Fsoe_faculty%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.georgefox.edu/?utm_source=digitalcommons.georgefox.edu%2Fsoe_faculty%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgefox.edu?utm_source=digitalcommons.georgefox.edu%2Fsoe_faculty%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgefox.edu/soe_faculty?utm_source=digitalcommons.georgefox.edu%2Fsoe_faculty%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgefox.edu/soe?utm_source=digitalcommons.georgefox.edu%2Fsoe_faculty%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgefox.edu/soe_faculty?utm_source=digitalcommons.georgefox.edu%2Fsoe_faculty%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/784?utm_source=digitalcommons.georgefox.edu%2Fsoe_faculty%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgefox.edu/soe_faculty/206?utm_source=digitalcommons.georgefox.edu%2Fsoe_faculty%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arolfe@georgefox.edu


Computational
Thinking Equity
in Elementary
Classrooms: What
Third-Grade Students
Know and Can Do

Yune Tran1

Abstract

The Computer Science Teachers Association has asserted that computational

thinking equips students with essential critical thinking which allows them to con-

ceptualize, analyze, and solve more complex problems. These skills are applicable to

all content area as students learn to use strategies, ideas, and technological practices

more effectively as digital natives. This research examined over 200 elementary

students’ pre- and posttest changes in computational thinking from a 10-week

coding program using adapted lessons from code.org’s Blockly programming language

and CSUnplugged that were delivered as part of the regular school day. Participants

benefited from early access to computer science (CS) lessons with increases in

computational thinking and applying coding concepts to the real world. Interviews

from participants included examples of CS connections to everyday life and inter-

disciplinary studies at school. Thus, the study highlights the importance of leveraging

CS access in diverse elementary classrooms to promote young students’ computa-

tional thinking; motivation in CS topics; and the learning of essential soft-skills such

as collaboration, persistence, abstraction, and creativity to succeed in today’s digital

world.

Keywords

computational thinking, elementary students, diverse learners

1George Fox University, Newberg, OR, USA

Corresponding Author:

Yune Tran, George Fox University, 414 N. Meridian St., Newberg, OR 97132, USA.

Email: ytran@georgefox.edu

https://us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/0735633117743918
journals.sagepub.com/home/jec
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0735633117743918&domain=pdf&date_stamp=2018-01-18


Introduction

Science, technology, engineering, and math (STEM) and computer science (CS)
jobs are expected to grow considerably over the next decade, faster than any
other job category. Education has played a critical role in equipping this next
wave of qualified and essential labor force, which is key to the U.S.’ economic
stability and innovation (National Academy of Sciences, 2007, 2010). Moreover,
these factors have led to numerous press accounts at local and national levels to
expand CS/STEM education. Most recently, President Obama in his final State
of the Union (2016) addressed the crucial need renewing CS education for all
students.

Given the demand to produce more qualified CS/STEM graduates, the
United States has invested in improving education from these disciplines.
Viable examples of such efforts included: adopting new K-12 content standards,
boosting teacher quality, expanding requirements for more rigorous CS/STEM
courses, improving curriculum, developing targeted professional development
for teachers, promoting positive perceptions and attractiveness of CS/STEM
careers, and reducing barriers for high school and undergraduate students so
they may persist in CS/STEM majors. While these solutions have shown to
enhance education, some critics argue that inherent problems remain. One criti-
cism in K-12 STEM education revolved around the emphasis on the teaching
and learning of science and mathematics, with less focus on technology and
engineering (Bybee, 2009; Johnson & Cotterman, 2013). This lack of CS educa-
tion has led to recent initiatives broadening STEM efforts to include computer
programming in schools since these skills are foundational to digital technolo-
gies, problem-solving, critical thinking, and conceptualization, complimenting
many academic content areas. A report by the National Research Council
(NRC; 2012) suggested that teachers should develop students’ understanding
of computational thinking (CT) by embedding its content in existing STEM
curricula given the critical role that CT plays in the 21st century (Rushkoff,
2010). Thus, the premise for this research study was to investigate over 200
elementary-aged students’ CT from pre- and posttest intervention based on a
10-week curriculum that exposed them to CS interdisciplinary content learning
in the classroom. The questions for the study included: (a) What changes, if any,
are evident in third-grade students learning of foundational CS concepts and CT
over 10 weeks of coding lessons and (b) How can 10 weeks of coding lessons
influence third-grade students’ CT in and out of school?

Literature Review

Background

Foundations, nonprofits, corporations, and governmental agencies are infusing
monetary and human resources to fuel the CS and STEM challenge.



Past research has indicated that early exposure to STEM curricula and comput-
ing programming support positive perceptions in CS and STEM fields as well as
reducing negative gender-based stereotypes (Metz, 2007). Thus, current reform
efforts in the STEM movement have raised awareness for CS education inte-
grated into existing content areas.

K-12 Education: Moving From CS to CT

With updated curricula to prepare students for college and career readiness,
adopted Common Core State Standards (CCSS) and Next Generation
Science Standards (NGSS) have included a more rigorous focus on critical
thinking, mathematical conceptually understanding (CCSS) and CS within
core scientific practices (NGSS). These standards provided a fitting backdrop
for the importance of embedding CS into existing content areas as well as CT
to be taught in schools. With highlights in NRC’s (2012) recommendations
for exposing students early to CT, Wing’s (2006) seminal call, and Barr and
Stephenson’s (2013) notion of workforce development, the field of CS has
moved to include CT into K-12 curricular frameworks. Recent scholars sup-
port propelling CS education introducing computing in K-12 instruction
with specific and cross-disciplinary contexts (Israel, Pearson, Tapia,
Wherfel, & Reese, 2015; Yadav, Stephenson, & Hong, 2017); thus, the ini-
tiative expands into an interdisciplinary space for teaching and learning of
CS and CT.

The aforementioned research point to the importance on CS and CT inte-
gration within K-12 disciplines, particularly STEM fields, given how innova-
tive mathematical models allow scientists and engineers to analyze, predict,
and reconstruct systems that were previously impossible. Moreover, a devel-
oped framework by Sengupta, Kinnebrew, Basu, Biswas, and Clark (2013)
recommended integrating CT into science and math lessons since these con-
tent areas provide a natural setting to apply algorithms, conduct scientific
procedures, and design engineering structures. This priority led to computing
initiatives that have been introduced and implemented across the country,
although largely focused on secondary and tertiary school levels. Fewer
initiatives were implemented and researched at the elementary level although
some research has reinforced early exposure for elementary-aged students in
CS/STEM initiatives given how these disciplines supplemented young lear-
ners’ innate minds of curiosity with improved critical thinking skills
(DeJarnette, 2012; Moomaw, 2012). Thus, such initiatives were crucial for
raising awareness in equity issues that have persisted in the evolving technol-
ogy landscape for underrepresented and underexposed students, particularly
females, minority populations, English learners (ELs), and children from eco-
nomically disadvantaged backgrounds (Andersen, 2005; Campbell, Denes, &
Morrison, 2000).



Defining CT

Various definitions for CT have existed and emerged. An attractive viewpoint of
CT has been presented by Brennan and Resnick’s (2012) three-dimensional (3D)
framework that included (a) computational concepts (sequencing, loops, events,
and conditionals), (b) computational practices (testing, debugging, reusing, and
abstracting), and (c) computational perspectives (expressing, connecting, and
questioning). Terms such as computer programming and CT have been used
interchangeably (Grover & Pea, 2013; Israel et al., 2015) and a recent debunking
of the myth regarding CT as computer technology (Yadav et al., 2017). Early
explanations of CT from the 1950s suggested it as ‘‘algorithmic thinking,’’ a
series of precise steps to solve problems and utilizing the computer when appro-
priate to automate the process (Denning, 2009). Other notions of the term
included Wing’s (2006) suggestion that CT drew on CS concepts to include
understanding human behavior, problem-solving, and designing systems; a cog-
nitive skill that an average person should possess (NRC, 2012). Bundy (2007)
argued that CT was essential to every discipline given its problem-solving
approach and applicability to any domain. Furthermore, these ideas were con-
sistent and supported by the International Society for Technology in Education
(ISTE) and Computer Science Teachers Association (CSTA) (see, ISTE &
CSTA, 2011) to specify that CT included: formulating problems through the
use of computers and various tools to solve problems; organizing and analyzing
data in a logical way; representing data with visuals and models; using algo-
rithms (a series of ordered steps) to automate solutions; identifying, analyzing,
and implementing possible solutions efficiently and effectively; and generalizing
problem-solving through a breadth and depth of problems. ISTE’s operational
definition also incorporated skills that were enhanced by vast attitudes and dis-
positions which were essential dimensions of CT comprising confidence in deal-
ing with the problem, persistence in working with the problem, tolerance for
ambiguity, the ability to deal with open problems, and the ability to work with
others to achieve a common goal (ISTE & CSTA, 2011). CSTA’s CT term
included the notion that students need to learn required thinking skills to
solve the most pressing problems (ISTE & CSTA, 2011).

Benefits of Early Exposure

Previous CS literature argued that elementary-aged children who participated in
computer programming have improved cognitive ability, mathematics, reason-
ing, and problem-solving as compared with children who did not participate
(Clements, Battista, & Sarama, 2001; Liao & Bright, 1991). Additionally,
long-term effects for children included sustained attention, self-direction, and
increased enjoyment in inquiry-based activities (Clements, 1987). Contemporary
programming literature highlight the need to support innovative programming



environments and languages such as Scratch, Kodu, Etoys, and Lego We-Do
that provide age-appropriate materials for children to apply core CT concepts
such as abstraction, automation, analysis, decomposition, modularization, and
iterative design (Bers & Horn, 2010; Mioduser, Levy, & Talis, 2009). From
understanding human behaviors and solving problems efficiently to error cor-
rection and heuristic reasoning, CT should be foundational to every child’s
analytical ability cutting across various academic domains, reading, writing,
and arithmetic skills (Wing, 2006). And despite misconceptions, children were
capable of taking on these mental challenges even at the earliest grades (Bers &
Horn, 2010).

Emerging practices and programming tools provided young learners an
increased knowledge in computing aimed for high ceiling to challenge students’
skills and low floor to allow easy access to programming (Good, 2011; Grover &
Pea, 2013). Kazakoff, Sullivan, and Bers (2013) found that children’s sequencing
skills improved significantly from pre- to posttest after participating in a 1-week
intensive robotics and programming workshop using a hybrid and developmen-
tally appropriate tangible software called CHERP that allowed children to
control the robot’s behaviors through physical or tangible and graphical or
on-screen movements (Bers, 2010; Horn, Crouser, & Bers, 2011).Other support-
ing research suggested how the learning of computing improved learners’ higher
order thinking skills and algorithmic problem-solving skills (Fessakis, Gouli, &
Mavordi, 2013; Kafai & Burke, 2014) including enriched cognitive benefits for
young gifted students who utilized Scratch to enact abstract knowledge when
creating multimedia products, games, and digital storybooks (Lee, 2011).

Assessment of CT

The assessment of CT has appeared in several recent studies although a lack of
research remains to comprehensively assess CT. Examples included: (a) Koh,
Basawapatna, Bennett, and Repenning’s (2010) assessment system based on the
semantic analysis of student-created games; (b) Werner, Denner, Campe, and
Kawamoto’s (2012) evaluation of students’ (10- to 14-year-olds) implementation
of challenges in a 3D gaming environment using Alice (http://www.alice.org);
(c) Brennan and Resnick’s (2012) analysis of children’s CT development using
the 3D framework with artifacts from Scratch projects; and (d) Bers, Flannery,
Kazakoff and Sullivan’s (2014) evaluation of young students’ (4.9- to 6.5-year-
olds) written programs following activities learned from a robotics curriculum.

The aforementioned examples of CT assessments have focused on students’
abilities to examine products after learning about a particular platform. These
protocols presented limitations in this study given its aim to evaluate CT learn-
ing through a classroom intervention model that included concepts, practices,
and perspectives occurring in a variety of tasks, contexts, and platforms.
As a result, a different pre- and posttest assessment was developed. Thus, the

www.alice.org


constructs of CT were broadly derived to Brennan and Resnick’s (2012) 3D
framework and ISTE and CSTA (2011) definitions with emphasis in developing
basic computational concepts, problem-solving in various contexts, and reason-
ing about everyday scenarios. The study’s pre- and posttest assessment measured
development of foundational concepts as well as knowledge transfer to CT
practices by making applications to functions of daily life.

Methods and Data Sources

Methods of inquiry were conducted from a sequential exploratory mixed-
method approach to utilize the unique strengths of combining quantitative
and qualitative data during the 2015–2016 academic year (Creswell, 2003).
Data collection and analysis were emphasized through quantitative measures
from students’ pre- and posttest assessments while students’ interviews were
used for qualitative measures.

Eligible participants included all elementary-aged students from 13 third-
grade classrooms enrolled in two school districts in Oregon. Control classrooms
were not selected given that this type of aggressive intervention was first of its
kind known at the time of study. Classrooms from the two districts were chosen
for the research due to its suburban and rural settings with participants from
culturally diverse and economically disadvantaged backgrounds. Informed con-
sent was obtained through a parent permission form including access to research
instruments. Appropriate Spanish translations were provided to classrooms to
adhere to the schools’ policies regarding correspondence written in English and
Spanish to accommodate the growing Latino populations.

Total student demographics from the most recent state report card data form
each district are shown in Table 1 (Oregon Department of Education, 2015)

The implementation selected all third-grade classrooms from the two dis-
tricts given the equity goal for all students to receive CS lessons as well as the
developmental appropriateness of concepts for that particular grade level.
Moreover, recommendations were also made by Code.org affiliates for cur-
ricular implementation to this elementary-aged group (http://code.org).
Undergraduate university students from a regional liberal-arts institution
composed of a preservice teacher(s) and a CS student delivered the coding
lessons weekly. The pairing of an education and CS student was strategic
drawing on complimentary expertise in education development and comput-
ing as they worked collaboratively throughout the implementation period to
plan and deliver lessons. Preservice teachers and CS students received weekly
training of content and pedagogy to support students’ learning of the CS
integrated concepts from university faculty. Lesson planning time occurred
each week and consisted of undergraduate students’ discussion and practice of
the concepts with faculty members offering pedagogical and differentiation
instructional strategies to meet varied needs.

http://code.org


Lessons lasted about an hour each week over a 10-week period. Each lesson
included approximately 30 minutes of hands-on learning of the CS concepts
drawing on implications of CT and another 20 minutes of online applications
using adaptations from CSUplugged (Bell, Witten, & Fellows, 2011) and Course
2 of the elementary framework that used Blockly programming language from
Code.org (http://code.org). These programming tools were purposefully selected
for the hybrid lessons to integrate hands-on learning of concepts and an online
media rich programming environment. Both tools aimed at engaging elemen-
tary-aged students with accessible and entry points to the concepts (low ceiling)
but challenge their mental capacities with more difficult lessons (high ceiling;
Good, 2011; Grover & Pea, 2013). Furthermore, elementary students were
paired with partners throughout the 10-week period as they engaged in hands-
on practice of the concepts, discussed its relationship to core subjects both in and
out of school, and interacted with the visual online tools.

Table 1. Selected Student Demographics of Districts A and B.

Selected Student Demographics Grades K–3 Grades 4–5

(a) District A 2014–2015

Total enrolment 1,562 804

English learners 15% 19%

Economically disadvantaged 45% 45%

Students with disabilities 11% 17%

White 74% 70%

Hispanic/Latino 20% 22%

Multiracial 3% 3%

Asian 1% 2%

Black/African American 1% 1%

(b) District B 2014–2015

Total enrolment 254 126

English learners 9% 6%

Economically disadvantaged 59% 60%

Students with disabilities 6% 17%

White 77% 79%

Hispanic/Latino 17% 13%

Multiracial 4% 5%

Asian 1% 1%

Black/African American 1% 1%

http://code.org


The intervention framework was derived from Kolb’s (1984, 1999) theoretical
model (see Figure 1) from which experience is central to learning and
development.

Kolb (1984) suggested that students practice four parts of the model when
learning new concepts to ensure the best learning and content transfer. For
instance, hybrid off-line or online activities around the concept of algorithm
involved concrete experience with graph paper and symbols to write the algo-
rithm and relate concepts to prior knowledge. Reflective observation involved
thinking about how concepts were presented with hands-on materials and dis-
cussing how those steps were performed in real life. Students reflected on the
steps of algorithms on graph paper and dialogued the critical steps to related
activities such as riding a bike or making a peanut-butter-jelly sandwich.
Abstract conceptualization involved internalizing the learning, acting on the
concept, and considering where to move blocks to execute a program with the
online puzzles. Active experimentation involved students jumping in, exploring,
and doing the online puzzles.

For the model to be effective, experiences should be leveraged and accessible
through active learning (Freeman et al., 2014) with rich interdisciplinary content
and context-embedded frameworks that combine CT with science (i.e., trial and
error with experiments linked to debugging), CT with math (i.e., writing down
step-by-step operations from a story problem using algorithm or minimizing

Figure 1. Model of Kolb’s theory.



steps in a math problem using the concept of loops), and CT with language arts
(i.e., storytelling and song writing using the concept of function). Thus, the goal
of the intervention was to introduce foundational CS concepts by having stu-
dents practice a variety of coding activities through lessons that enhance CT
with discussion of relatable content and real-life applications learned from dif-
ferent subjects or home experiences.

Elementary students completed a pre- and posttest on CT that was developed
by the researcher in consultation with the university’s CS department.
Constructs of the assessment included 10 written items that measured different
computational concepts, practices, and perspectives with two questions per con-
cept related to sequence, algorithm, looping, debugging, and conditionals (see
Appendix). The researcher pilot tested the instrument to a group of third-grade
students unrelated the research project to ensure appropriate vocabulary and
understanding of the constructs. An example of a sequencing test item included:
‘‘Put these mixed-up instructions for baking a cake in order using only four
steps. Write numbers 1-4 next to those steps.’’ In this task, students analyzed
each step of the algorithm drawing on CT practices and perspectives by relying
on familiar experiences. Students completed the instrument by hand in class
before and after the intervention period. Accommodations were provided to
students who needed oral administration, extra time, or text translation.
Assessments were collected and scored for each item (1¼ correct and 0¼ incor-
rect) following each administration. In addition to the assessments, an average
of 4 students per classroom, or 52 students overall with parental consent, parti-
cipated in several random semistructured interviews during the 10-week lesson
cycle. At the start of each interview, the researcher initiated conversations about
students’ enjoyment of interests, tasks, and fun activities to build students’ trust,
comfort, and confidence in answering questions. Once students were at ease, the
researcher posed a series of questions related to learning outcomes of coding
lessons and students’ perceptions of in and out of school-related activities.
Rarely, did the researcher have to prime or prompt students for answers. The
majority of students shared eagerly and reflected positively on their learning
experiences since the topics were relatively new to them. Examples of questions
included: (a) What are you learning from coding lessons when Mrs. W. or Mr.
X. comes to your classroom each week?, (b) How do you feel about these les-
sons?, and (c) Is coding important in life? Interviews were recorded and tran-
scribed to produce descriptive codes and themes.

Interviews utilized theme analysis with techniques that searched for word
repetitions or key words in context (Strauss, 1992), a careful reading of larger
blocks of text to compare and contrast (Glaser & Strauss, 1967), and an inten-
tional search of linguistic terms (i.e., because, so, and so on) that described
causal relationships (Strauss & Quinn, 1997). Thus, the methods of inquiry
were conducted from an exploratory mixed-method approach to utilize the bene-
ficial strengths of quantitative and qualitative research paradigms (Creswell,



2003; Patton, 2002). Results report quantitative measures of the survey instru-
ment using (STATA) software. Other major qualitative themes from students’
responses on the interviews were related to (a) specific recall of learning concepts
from CS lessons; (b) relationship of learned CS concepts to everyday life; and (c)
essential development of soft-skills such as collaboration, teamwork, and per-
sistence. Utilizing the definition term of CT drawn from Wing’s (2006) perspec-
tive, students made connections of concepts learned in the recognition of key CT
ideas associating them with everyday life citing examples of soft-skills and link-
ing attitudes and dispositions to essential CT domains (ISTE & CSTA, 2011).

Findings

Results From CT Assessment

Results from elementary students pre- and posttest assessments included 263
pretests and 244 posttests from 13 teachers in five schools. Students identified
themselves by first name only. Of all identified individuals, 183 could be matched
on the two tests. Scores ranged from 0 to 10 and internal reliability coefficients
were .63 on the pretest and .61 on the posttest. These figures are low but
expected of an exploratory mixed-method study. The instrument will be revised
to achieve higher measures in future administration. The percentages correct
increased for all teachers and the changes were significant for five teachers
(p< .0038, with a Bonferroni correction for familywise error) and the overall
increase from pre- to posttest was significant, t(182)¼ 9.62, p< .0001. The
second loop question (Item 6) and the first debugging question (Item 7) did
not make significant gains although there was an attempt to create assessment
items with language couched in normal everyday usage. A two-step process for
those questions likely presented confusion for students. The loop question
required students to circle the repeating patterns and then rewrite them only
once on the line, whereas the debugging question required students to cross out
incorrect steps and then rewrite them correctly on the line. Thus, one-step pro-
cedures are best for reducing technical jargon and will be corrected on future
assessments. Table 2 represents the percentage increases and change for each test
item from pre- and posttest, whereas Figure 2 shows the same information in the
form of a line graph. It appears that the activities implemented under this type of
intervention where lessons included hands-on activities, discussion, and online
application are generally successful in promoting CS understanding for young
students.

Results From Student Interviews

Student interviews produced particular examples of specific concepts that were
acquired from the lessons and how those concepts influenced tasks both in and



out of school. Nearly half of the 52 students (40%) who participated in the
interviews were able to provide specific concept that they learned: 8 students
recalled the concept of loops, 7 recalled the concept of debugging, and 6 recalled
the concept of algorithm as learning milestones. Other students made references

Table 2. Pre- and Posttest Percentages, Correct by Item, Total Score.

Assessment construct Item Pre SD Post SD Total SD Change

Sequence 1 0.51 0.50 0.74 0.44 0.62 0.49 0.23

Sequence 2 0.45 0.50 0.62 0.49 0.54 0.50 0.17

Algorithm 3 0.61 0.49 0.80 0.40 0.70 0.46 0.19

Algorithm 4 0.28 0.45 0.40 0.49 0.34 0.47 0.11

Loop 5 0.21 0.41 0.39 0.49 0.30 0.46 0.18

Loop 6 0.03 0.18 0.08 0.27 0.05 0.23 0.04

Debug 7 0.09 0.29 0.08 0.27 0.08 0.28 �0.02

Debug 8 0.45 0.50 0.69 0.46 0.57 0.50 0.23

Conditional 9 0.58 0.49 0.70 0.46 0.64 0.48 0.12

Conditional 10 0.11 0.32 0.22 0.42 0.17 0.38 0.11

Note. Overall increase from pre- to posttest was significant at p< .0001 level.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Differences in Students' Computational Assessment 
from Pre- to Post-test

Pre-test % Correct Post-test % Correct

Figure 2. Line graph representation of computational assessment.



to the enjoyment of lessons and the opportunity to learn something different as
well as the ability to play on the i-pads. Thus, an overwhelmingly 96% of stu-
dents (50 of 52) had positive reactions to the lessons saying words such as:
‘‘excited, really good, happy, it’s fun, I’m learning new stuff, I look forward
to the lessons, and I’m enjoying them.’’ The responses of males resorted to short
one or two words whereas that of females were more elaborate in how they felt
about the lessons. The remaining two students were neutral in attitude about
how they felt about the lessons although they did specify that they would prefer
more challenging lessons.

Specific learning experiences from coding lessons. The various concepts of loops,
debugging, and algorithm with their definitional uses were prevalent in the
majority of students’ learning responses. Participants shared understandings of
these concepts highlighting examples that were tied to hands-on and online les-
sons. Tables 3 to 5 depict the three major concepts and learning responses by
students including their gender, age, ethnicity, and EL background. Rather than
individual economic descriptions for the cases participating in the interviews, the
total percentages for economically disadvantaged for all students participating
are included using criteria from the district’s free and reduced lunch program
and special education qualification.

Relationship of CT to essential everyday life. Students explained the connections of
lesson concepts as they related to important functions in everyday life. Selected
key principles in coding lessons promoted students’ understandings and appli-
cations within the environment. Several responded as to how the lessons asso-
ciated to understanding the world with these comments:

. ‘‘Your morning routine. You wake up, get dressed, brush your teeth, and
brush your hair. Well actually, you wake up, get dressed, brush your hair, eat
breakfast, and then brush your teeth. (Betty)

. ‘‘It’s helpful because later if your computer doesn’t work then you know how
to fix it.’’ (Gigi)

. ‘‘You can fix your mistakes and it will help you get successful.’’ (Kelly)

. ‘‘It’s when you say, go touch the door, and come back, go touch the
door, and come back, and go touch the door, and come back. Instead
of saying it 3 times just say, Hey Ethan, go touch the door three times.’’
(Zeus)

. ‘‘The best part is like when we get to do the online games and talk about
things. Like math is pretty important, because those that make people smar-
ter they start out by using math.’’ (Mike)

. Learning about coding will help me in a future job. I might want to be a judge
and a judge needs to use teamwork by communicating with their helpers and
the people.



Table 3. Students’ Background Information and Learning Responses Related to Loops.

Student

(pseudonyms) Learning response Background

Adolfo During coding, I learn about looping. Looping means like instead of saying, ‘‘move

forward, move forward, move forward’’ a bunch of times you can just loop it

and put it in the little squares and things. And for the game you can choose a

number for how many times you want to do it.

Latino male, age 9 years, EL

student

Amy About looping. Repeating things like, if someone tells you, ‘‘go touch the door and

then go back to your seat’’ and then they tell you to do it again and again, they

could just say, ‘‘go touch the door and go back to your seat three times.

White female, age 9 years

Ben We are learning to make this little person from other games Basically to make him

do it over and over again. And I can use just a few codes. So I can type in number

5 and I put something in the code block, the repeat block and he would do that 5

times. So if I made a pattern and he did it 5 times, so if it was diagonal like this

and then here’s where he wants to go, I could say, ‘‘Forward, forward, turn right

or left, and then forward, forward’’ and so on. And then I could count like the

this . . . four, five, six and if there were six I would put in the number six and it

would go like this 6 times.

White male, age 8 years

Jake I’m actually learning that computer coding when I do it its actually getting better

and better every day & I’m enjoying it. I’m learning looping (Let’s say you need to

sharpen 10 pencils, you don’t say ‘‘sharpen the pencil, (says that x10 in mind). All

you have to say is sharpen the pencil x ten. It helps in life. Algorithm it’s like a

series. Let’s say you want to make a fortress so you need to set up at least four

chairs, some blankets & I remember you need steps.

White male, age 8 years

Jane Right now we are learning about looping. Looping is when easier to repeat stuff

and you don’t have to say it over and over again. You can x it with whatever you

want to put & x it.

White female, age 8

(continued)



Table 3. Continued

Student

(pseudonyms) Learning response Background

Niko A loop is where you have something, like an algorithm, here is the zombie and then

there’s the path and there’s the chomper plants that you have to get him to here,

you have to get him to the sunflower. So you pick an algorithm, the loop button

is kind of shaped like that, and it lets you pick what you want to do. You pick

your thing and put it inside there. Like the normal pattern, without using the

loop button, would be, move forward, move forward, move forward, turn left,

move forward, move forward, move forward, but with that, you could do ‘‘move

forward x3’’ and then you would do ‘‘turn left’’ then ‘‘forward x3’’ and that’s

how you use the loop.

Asian male, age 8 years, EL

student

Quincy It’s really fun. I feel good. They are helping like shortening things. Sometimes I use

looping for other things like for writing. Instead of saying and a dog and a cat, I

say it repeats.

Latino female, age 8 years, EL

student

Mike Loops are something you can do over and over again. White male, age 8 years

Note. EL¼ English learners.



Table 4. Students’ Background Information and Learning Responses Related to Debugging.

Student

(pseudonyms) Learning response Background

Andy Debugging like, we can fix the mistake. We were having a relay race and we were

running to the paper and if the person in front of you did something wrong you

would circle it and put a line through it and then put the correct thing, the

correct arrow.

White male, age 9 years

Cameron Debugging is like we’re playing a game right now and we have to tell the bee how to

get to his flower to make honey or get to a honey comb to make honey. And if

it’s supposed to go left and if we accidently tell it to go right we have to debug

and make it a turn that you want it to go.

African American male, age

8 years

Gigi I’m learning new words. I’m learning how to program. That most of this stuff is part

of our everyday lives. Debug is like to correct when sometimes someone else is

correcting some test, and you get the answer wrong, and they write down the

right answer that is debugging.

Latina female, age 8 years, EL

student

Paul The best thing about the coding class was I liked debugging because xxx was

making mistakes and I fixed his mistakes.

White male, age 9 years

Beau The one that we’re doing right now, where we’re fixing and debugging. It’s where

we have to fix something. Sometimes when people put in wrong steps, you have

to fix them

White male, age 8 years

Note. EL¼ English learners.



Table 5. Students’ Background Information and Learning Responses Related to Algorithm.

Student

(pseudonyms) Learning response Background

Joe Program is like you’re doing by following an algorithm. And an algorithm is a list

of instruction.

White female, age 9 years

Macy Like algorithm, where there is a process. Like steps, like building a plane or to

brush your teeth is in steps.

African American female, age

8 years, EL student

Maria The word algorithm is a list of things that you do. An algorithm we are doing a

dance thing & it’s like we are doing clap, clap, clap 3x, its hands on head,

hands on hips, so then at the end we do spin. So you do clap again, clap 3x

and hands on head, hands on hips repeat. Clapping 3x is the algorithm

Latina female, age 8 years, EL

student

Eve Algorithm is kind of like ordering stuff. Like from one to ten like library.

Drawing books only go to the area of drawing books. Like if there are twenty

books of drawing you will put them in order.

White female, age 9 years

Ricardo In math you use algorithms, like when you do an equation Latino male, age 9 years, EL

student

Mike Algorithms are like steps, like to make a sandwich. White male, age 8 years

Note. EL¼ English learners.



These students’ responses revealed a construction of relevant examples to
explain the interconnectedness of CT to daily life. Through problem-solving
and critical thinking, students were able to make connections that link CS con-
cepts to their own world.

Essential soft-skills such as teamwork and persistence are critical in life. Students identi-
fied social benefits in the coding lessons, and that, the lessons advanced skills in
teamwork and collaboration between peers. Some students referenced how the
lessons improved their abilities to share and balance turn taking. The responses
following indicate this notion.

. ‘‘I feel good about them. I like the part where we get to be with our friends.
It’s teaching me how to take turns and stuff. Last year I wasn’t doing a very
good job at taking turns.’’ (Abel)

. ‘‘It actually is helping me with teamwork which I’m not good at.’’ (Carla)

. ‘‘Learning about coding will help me in a future job. I might want to be a
judge and a judge needs to use teamwork by communicating with their help-
ers and the people.’’ (Jen)

. ‘‘My favorite part is probably working with my partner to help the bee find its
nectar and honey. It’s teaching me how to be more friendly and be nice to
others.’’ (Betty)

. ‘‘I learned in coding working together. Then I will be a lifeguard because it is
working together like a lifeguard saves the drowner and another lifeguard
keeps the people away.’’ (Ted)

. ‘‘I think that it will help me with partnering up because in the SWAT team
people pair up and work together.’’ (Tim)

. ‘‘Buddy working will help me in a future job. I know this because if you were
going to be a vet you would have to work with the other vets. ‘‘(Vicky)

. ‘‘If you are an engineer, teamwork will be one important thing in this job.’’
(Luke)

. ‘‘Learning about coding will help in a future job because working together
with a partner will give me practice for the future.’’ (Quincy)

. ‘‘When you are a tailor, if more than one person is helping, teamwork will be
very useful to help communicate.’’ (Rosie)

. ‘‘It teaches you teamwork with your partner. Sometimes they can be challen-
ging and sometimes can be easy.’’ (Kyle)

. ‘‘I’m learning that you should share with your partner and that sharing you
should always be nice, don’t be a bossy navigator or a bossy driver. It’s
important for later in anything.’’ (Jane)

The notion of persistence and working hard to not give up was a common
skill identified by students as a valuable tool to be used later in life. This ability
to endure and persist through the new and challenging content enabled students



to continue problem-solving within the online puzzles to correct errors from pro-
grams. Not only were students motivated to complete the level to move onto the
next, but also they acquired a sense of work ethic that allowed them to continue
the challenging task. Several examples that emphasized this point were:

. You guys inspired me that not everything is perfect but you still have to try
hard and use teamwork. You need help. Teams help a lot.’’ (Joe)

. ‘‘Coding is really, really fun! And it’s really hard! But, you never give up,
because you know you will get on a higher level if you don’t give up. At first it
seems really hard, but so on it’s like ‘‘Hey! I know this and it’s really easy!’’
But at first you think that you won’t be able to do it and so on. Then you’re
like, ‘‘Hey! I can do this; it is really easy.’’ (Harriet)

These examples demonstrated that when children try something new and
different, they are easily frustrated; however, for Harriet and Joe, they were
able to complete the task regardless of the difficulty. Qualities such as having
patience, getting practice, and giving your best effort were significant attributes
that allowed them to achieve tasks. And despite the challenges they encountered,
students were able to work collaboratively with partners to persevere through
the puzzles with the correct code to move the character in the game.

Discussion

This study sought toanswer the two researchquestions related toan implementation
of CS coding lessons provided during in-school time to elementary-aged students
who were attending increasingly diverse suburban and rural schools. In doing so, it
became apparent that the findings about students’ learning in computing supported
previous literature on the advantages reaped from early exposure of certain CT
activities as well as leveraging equity to allow all students a chance to learn CS.

In answering the first research question, it became evident that students’
understanding of specific CS concepts particularly related to algorithm, loops,
and debugging improved from pre- and posttests based on the intervention.
Extensive research has focused around issues of what constitutes as CT across
K-12 education (Barr & Stephenson, 2011); the teaching and learning of CS
skills, concepts, and practices (Grover & Pea, 2013); and the environments on
how CS skills are learned (Brennan & Resnick, 2012; Cooper & Cunningham,
2010). One approach of CT presented within the CS education community
involved a list of concepts mapped according to content disciplines such as
the algorithm used in in science, how abstraction unfolds in social studies, or
automation in math (Barr & Stephenson, 2011). The other approach previously
mentioned provided operationalizing CT in K-12 education in terms of the 3D
model with articulation in how to engage students for each level with its diverse
uses (Brennan & Resnick, 2012). Yet, current research continues investigation of



the creation of frameworks for understanding and evaluating CT as well as the
implications of learning environments, tools, and activities that promote such
learning (Weintrop et al., 2014). Important to note in this study was the use of
varied environments in designing the intervention program that drew upon
adapted lessons from CSUnplugged (Bell et al., 2011) and the Code.org
(http://code.org) framework. The intersections of the CT environments were
derived from three broad categories of computer programming consisting of
(a) simulation and modeling (Basawapatna, Repenning, Koh, & Savignano,
2014), games design (Reppening, Webb, & Ioannidou, 2010), and visual or tan-
gible blocks such as Scratch (Resnick et al., 2009). The three environments were
practiced during the intervention when students (a) learned the concept of algo-
rithm using a simulation activity modeled by the preservice teacher and CS
student to carry out the steps to make a sandwich, (b) matched blocks with
the appropriate event handler to create a game using the event handler blocks
((http://code.org; Course 2, Flappy Lesson), and (c) used loops to write a pro-
gram for employing a combination of commands to make the bee perform the
actions on the computer.

Furthermore, students employed a variety of simulation exercises to gain
knowledge of CS concepts while transferring that knowledge to enhance CT
development. For the concept of debugging, students engaged in a relay race
where team members collaboratively edited errors in a program where as in the
concept of loops, students performed loops through a repeated dance activity
and created new repetitive motions using pop songs. Students had opportunities
for discussion of the concepts before transitioning to apply understandings to
the online platform to drag, drop, blocks for game design, or created new tasks
to program the characters from Code.org. Research has suggested that compu-
tational rich environments and effective tools should encourage ‘‘low floor and
high ceiling’’ principles to allow novice learners to create programs (low floor)
with sufficient content to satisfy advanced programmers (high ceiling; Grover &
Pea, 2013). The hybrid environment with curricular hands-on activities were
ideal methods to motivate and scaffold elementary-aged students’ understanding
of introductory CS concepts, thus, promoting CT and enabling transfer of the
content by utilizing the programming language embedded (Resnick et al., 2009)
with the visual or graphic blocks from Code.org. The lessons were systematic
and enabled transfer while advancing equity within CT platforms (Reppening
et al., 2010) given their delivery during the day as a formative experience inclu-
sive of all learning backgrounds. Moreover, the intervention program was deliv-
ered to selected underrepresented elementary-aged students enrolled in the two
districts with economically disadvantaged backgrounds (between 45% and
59%), a growing Latino population (between 17% and 20%); ELs (between
9% and 15%), and special education (between 6% and 11%). This type of
learning might not have been possible with the lack of teacher knowledge and
resources from the two districts.

http://code.org
http://code.org


In answering Research Question 2, the benefits of early exposure promoted
students’ positive attitudes about CS learning, enriched CT and problem-solving
skills, and generated interest about CS in everyday life. Basic math and science
literacy have been fundamental goals for all children; however, additional com-
puter competencies have fostered analytical and problem-solving abilities needed
in schools (NRC, 2012). Participants made crucial connections to out-of-school
activities including on-demand job-related soft-skills such as communication
and teamwork, highlighting benefits gained from the opportunity to learn
coding. The legacy of unique thinking skills that children developed with CT has
shared elements to mathematical, engineering, and design (Lee et al., 2011).
Moreover, international curriculum statements have supported essential critical
thinking skills that young students need to progress in the 21st century with neces-
sary competencies for a successful future (Australian Curriculum Assessment &
Reporting Authority, 2010; Organisation for Economic Co-operation and
Development, 2015). Particular higher order thinking skills have been traditionally
emphasized through analysis, synthesis, and evaluation taught in subject areas
(Bloom, 1956) as well as solving ill-structured problems by observing, inferring,
and predicting through processes such as interpreting data, manipulating variables,
and developing solutions (Lewis & Smith, 1993). Students in this study developed
CT as they actively discussed problems related to debugging, loops, and algorithms
by finding optimal solutions for the unplugged activities and online puzzles; thus,
challenging each other’s thinking as they discovered different ways to solve complex
problems or make associations of those concepts to the outside world. Previous
research has highlighted how Scratch programming improved effects of logical
reasoning and problem-solving skills in young learners (Lee, 2011) including
cross-curricular benefits such as the importance of computing skills that are used
to assist students to read, understand, and adapt algorithms in various situations
(Brown&Kolling, 2012). Finally, students enacted CT skills using variousmethods
on the final lesson that involved animated creations using Code.org characters for
interactive art for digital stories (Calder, 2010).

Most interesting from the study was the innate ability of students to persevere
as they engaged in collaborative work rather than expecting immediate success
when confronted with challenging tasks. The learning experiences made indelible
impact on participants as they embraced collaborative challenges to persist men-
tally and academically. Increased computational competencies primed early
interest for participants to engage in future CS studies, thus, promoting positive
perceptions as they enter secondary school or beyond. Utilizing pair program-
ming promoted social skills as mentioned in previous studies (Lewis, 2011;
Scaffidi & Chambers, 2012) that were significant in advancing students’ atti-
tudes, understanding, and interest in CS. Not only were students engaged and
motivated by the tasks, they also learned to navigate cooperatively by asking
questions about unplugged activities while employing reasoning techniques to
discover various patterns that were embedded in the online puzzles and games.



This studied investigated the impact of CT opportunities provided to young
children and found how students made connections to curricular subjects. It may
be worth noting that CT practices have been integrated across a variety of sub-
jects and findings (Sengupta et al., 2013) and this study confirmed that early
learners were capable of making associations. As noted from the literature and
consistent with research (Fessakis et al., 2013; Papert, 1991), the power of com-
puting increased students’ problem-solving and higher order thinking skills as
they learned the embedded content and practiced them through interactive visu-
alization from Code.org. Embedding CT practices into subjects such as history,
language arts, mathematics, and science have been supported (NRC, 2012;
Sengupta et al., 2013; Yadav et al., 2017). Some research has specified bringing
CT into K-12 classrooms with STEM learning through online computational
resources such as the iLab Network to enable students to use instruments and
interact with scientific phenomena by controlling experimental equipment and
taking measurements of the material in real time (Jona et al., 2014). In this way,
students can make deeper connections of CT practices with science and technol-
ogy in an engaging and meaningful way. Regardless of the medium, advocates of
CT agreed that the urgency to teach and strengthen CT as a priority for K-12
classrooms. This study highlighted one example of how CT allowed elementary-
aged students from diverse backgrounds to thrive in soft-skills, critical thought,
reasoning, and understanding.

Implications and Future Directions

CT has gained momentum in schools with considerably press and resources in
schools to provide American students with fundamental skills needed to com-
pete in the global economy. This study attempted to document the effects from
an aggressive intervention that leveraged opportunities for learning during the
day. Future studies must be sensitive to the processes that occur at micro and
macro level for implementing the growing demand of CT in schools. Barriers
such as access to technology, resources, time, student demographics, environ-
mental conditions, preservice and inservice teacher knowledge, and professional
development are associated with implementation. Additional research is needed
to investigate the different types of software, programs, courses, or platforms
used in elementary instructional contexts as well as how they are ensuring equity
for participation or reducing barriers effectively.

Teacher content knowledge, pedagogical practices, and instructional strate-
gies are important factors to explore in future research. Increased professional
development opportunities provided from code.org including federal, state, and
local initiatives have broadened participation for inservice teachers to deliver CT
in classrooms across the country. More of these types of learning experiences are
needed for inservice teachers to support students’ understanding of CT concepts
including application to the disciplinary knowledge related to specific subject



area. Inservice teachers require professional development on best practices to
possess skills and confidence to prepare engaging lessons and deliver meaningful.
Finally, inservice teachers need training on appropriate hybrid forms of learning
which include physical and digital tools in the curriculum so that students are
exposed to computational practices in core and interdisciplinary content.

A complimentary approach of teacher knowledge and applicable tools exist
for preservice teachers as well. Providing preservice teachers with the requisite
courses in content, pedagogy, and instructional practice necessitates preparation
as they work with K-12 students in the digital world. Embedding this type of
background knowledge, skills, and appropriate framework for teaching core
content with interdisciplinary CT is fundamental in any preparation program
regardless of licensure level or content specialization. Updated CT preparation
can help to move the pendulum so that preservice teachers transfer their
knowledge and capacity to influence learning in their future classrooms. In
this way, CT moves from an interdisciplinary space to a transdisciplinary
environment so students master critically thinking to succeed across multiple
fields of study (i.e., journalism, finance, physics, language arts, or biology).
Finally, education and CS faculty in K-16 platforms should collaborate given
complimentary expertise on the best ways to support and improve the teaching
and learning of CT.

Given the elements of soft-skills that are essential traits that can be taught
and learned, elementary-aged students could benefit from lessons that embed
these traits into the standard curriculum. Fictional stories and expository texts
that highlight characters with these traits could be ways to naturally discuss
them in class. Arranging time for these discussions can be explicit with character
analysis during small group reading or within the larger class as students and
teachers share personal stories about difficult challenges while proposing strate-
gies for success. Elementary-aged students should have conversations with their
peers and teachers around similar characteristics with some common sayings
such as: ‘‘I can do it.’’ ‘‘I won’t quit.’’ ‘‘It’s hard the first time, but it will get
easier.’’ These conversations and discussions are helpful to students as they
problem solve with grace and ingenuity when overcoming obstacles and mis-
takes in class or on homework. Equally important in nurturing these soft-skills
would be for teachers to resist the temptation of giving students the answer on
certain tasks as they face challenges. Ideal environments include inquiry-based
lessons and practices that allow students to collaborate with peers, construct
arguments, investigate theories, apply thinking, and assimilate new knowledge.
Thus, teachers need to develop content knowledge, skills, and practices that
integrate digital and physical components to expose and enrich students’ critical
thinking capacity. In this way, students practice and use CT to find solutions to
complex problems, persevere, and build confidence as they complete tasks
related to the real world since these skills are vital to their achievement within
the global market due to the rapid changes of technology.



Finally, a future direction includes revision to the assessment instrument. A
revised assessment will be administered to experiment groups to measure stu-
dents’ CT skills. Given past results from the project, future studies may also
involve second- or third-level effects, with investigators collecting data on imple-
mentation and context that might explain higher level factors. For instance,
three of the teachers with nonsignificant results came from the same school,
suggesting there may have been a systematic difference in implementation at
that site. Future use of the assessment would include revision of wording of
all items as well as stronger alignment with curricular content.

Conclusion

The current technology landscape demands students who are prepared with
related CS or CT skills for growing workforce needs. It has been documented
that integrated CT is imperative in K-12 education. This study supported that
priority as well as extending CS opportunities to all students from diverse back-
ground experiences, especially those most vulnerable who have lacked resources
to develop critical CT skills and applications to in- or out-of-school experiences.
In summary, this study initiated the call of leveling the playing field in CS edu-
cation within the elementary space so that all students, regardless of gender,
race, language, economic status, or intellectual ability, can emerge as a CT
winner and succeed in the 21st century.

Appendix

Computational Thinking Assessment



1. Using the words ‘‘up,’’ ‘‘down,’’ ‘‘left,’’ and ‘‘right,’’ write down the instruc-
tions for completing the maze (e.g., up, up, left, down).

___________ ___________ ___________ ___________ ___________
___________

2. Now, write instructions for completing the maze going backwards (starting
at ‘‘END’’ and getting to ‘‘START’’).

___________ ___________ ___________ ___________ ___________
___________

3. Put these mixed-up instructions in order by writing numbers 1–6 next to
each step.
� Pick the ripe tomatoes. ______
� Plant seeds. ______
� Buy seeds. ______
� Eat the tomatoes. ______
� Watch the plants grow. ______
� Water the seeds. ______
4. Put these mixed-up instructions for baking a cake in order using only four

steps. Write numbers 1 to 4 next to those steps.
� Make a salad. ______
� Pour batter into pan. ______
� Eat half of the batter. ______
� Mix ingredients in a bowl. ______
� Drink some water. ______
� Bake for 20 minutes. ______
� Measure ingredients. ______
5. Emma is exercising before gym class. Emma does two push-ups. Emma

repeats the first step three times, and touches her toes once after each
repeat. How many push-ups did Emma do? ________

How many times did she touch her toes? __________

6. Rewrite these instructions so that loops (repeating patterns) are only written
once.
� Do three pull-ups.
� Do three pull-ups.
� Drink water.
� Do three pull-ups.
� Do three pull-ups.
� Drink water.



� Do three pull-ups.
� Do three pull-ups.
� Drink water.
� Have a snack.

———————————————————————————————
———————————————————————————————

7. Circle the wrong steps in the sequence.
� Wake up.
� Get dressed and eat breakfast.
� Drive to school.
� Put on your backpack for school.
� Get in the car.
� Walk into the classroom.
8. Rewrite the sequence from above to make it correct.

————————————————————————————————
————————————————————————————————

9. If Emily has three or more apples, she can make an apple pie. Emily has five
apples and one pumpkin. Can she make an apple pie?

Circle Yes or No.

10. If John has two bananas, he will share one with his friend. Else, John will
keep the banana. John has one banana and two carrots. What is John going
to do?

Declaration of Conflicting Interests

The author declared no potential conflicts of interest with respect to the research, author-
ship, and/or publication of this article.

Funding

The author received no financial support for the research, authorship, and/or publication
of this article.

References

Andersen, M. (2005). Thinking about women: A quarter century’s view. Gender and
Society, 19(4), 437–455.

Australian Curriculum Assessment & Reporting Authority. (2010). Digital techno-
logies in the Australian curriculum. Retrieved from http://www.australiancurricu
lum.edu.au/

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is

involved and what is the role of the computer science community? ACM Inroads, 2(1),
48–54.

www.australiancurriculum.edu.au/
www.australiancurriculum.edu.au/


Basawapatna, A. R., Repenning, A., Koh, K. H., & Savignano, M. (2014, March).
The consume-create spectrum: Balancing convenience and computational thinking

in STEM learning. In Proceedings of SIGCSE 2014 conference (pp. 658–664).
New York, NY: ACM.

Bell, T., Witten, I., & Fellows, M. (2011). Computer science unplugged. Retrieved from

http://csunplugged.org/books/
Bers, M. U. (2010). The TangibleK robotics program: Applied computational thinking

for young children. Early Childhood Research & Practice, 12(2). Retrieved from http://
ecrp.uiuc.edu/v12n2/bers.html

Bers, M., & Horn, M. (2010). Tangible programming in early childhood: Revisiting
developmental assumptions through new technologies. In I. Berson & M. Berson
(Eds.), High-tech tots: Childhood in a digital world (pp. 49–70). Charlotte, NC:

Information Age Publishing.
Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational think-

ing and tinkering: Exploration of an early childhood robotics curriculum. Computers

& Education, 72, 145–157.
Bloom, B. (1956). Taxonomy of educational objectives book 1: Cognitive domain. New

York, NY: Longman.

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the
development of computational thinking. Paper presented at the Annual Meeting of the
American Educational Research Association, Vancouver, Canada.

Brown, N., & Kolling, M. (2012, July). Position paper: Programming can deepen under-

standing across disciplines [DRAFT]. In IFIP working conference-addressing educa-
tional challenges: The role of ICT. Manchester, England: Manchester Metropolitan
University. Retrieved from http://www.cs.kent.ac.uk/people/staff/nccb/position_

paper.pdf
Bundy, A. (2007). Computational thinking is pervasive. Journal of Scientific and Practical

Computing 1, 2, 67–69.

Bybee, R. W. (2009). K-12 engineering education standards: Opportunities and barriers.
Workshop on Standards for K-12 Engineering Education. Washington, DC: National
Academies Press.

Calder, N. (2010). Using Scratch: An integrated problem-solving approach to mathem-

atical thinking. Australian Primary Mathematics Classroom, 15(4), 9–14.
Campbell, G., Denes, R., & Morrison, C. (Eds.). (2000). Access denied. Race, ethnicity,

and the scientific enterprise. Oxford, England: Oxford University Press.

Common Core State Standards http://www.corestandards.org/ (accessed 15 November
2017)

Clements, D. H. (1987). Longitudinal study of the effects of logo programming on cog-

nitive abilities and achievement. Journal of Educational Computing Research, 3, 73–94.
Clements, D. H., Battista, M.T., & Sarama, J. (2001). Logo and geometry. Journal for

Research in Mathematics Education. Monograph, 10, I–177.

Cooper, S., & Cunningham, S. (2010). Teaching computer science in context. ACM
Inroads, 1, 5–8.

Creswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed methods
approaches (2nd ed.). Thousand Oaks, CA: Sage.

http://csunplugged.org/books/
http://ecrp.uiuc.edu/v12n2/bers.html
http://ecrp.uiuc.edu/v12n2/bers.html
http://www.cs.kent.ac.uk/people/staff/nccb/position_paper.pdf
http://www.cs.kent.ac.uk/people/staff/nccb/position_paper.pdf
http://www.corestandards.org/


CSTA. (2011). Operational definition of computational thinking for K-12 education.
Retrieved from http://www.csta.acm.org/Curriculum/sub/CompThinking.html

DeJarnette, N. K. (2012). America’s children: Providing early exposure to STEM (sci-
ence, technology, engineering and math) initiatives. Education, 133(1), 77–84.

Denning, P. J. (2009). The profession of IT beyond computational thinking.

Communications of ACM, 52(6), 28–30.
Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5-6 years old kin-

dergarten children in a computer programming environment: A case study. Computers
& Education, 63, 87–97.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt,
H., . . .Wenderoth, M. P. (2014). Active learning increases student performance in
science, engineering, and mathematics. Proceedings of the National Academy of

Sciences, 111, 8410–8415.
Glaser, B. G., & Strauss, A. (1967). The discovery of grounded theory: Strategies for

qualitative research. New York, NY: Aldine.

Good, J. (2011). Learners at the wheel: Novice programming environments come to age.
International Journal of People-Oriented Programming, 1(1), 1–24.

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of

the field. Educational Researcher, 42(1), 38–43.
Horn, M. S., Crouser, R. J., & Bers, M. U. (2011). Tangible interaction and

learning: The case for hybrid approach. Personal and Ubiquitous Computing,
16(4), 379–389.

International Society for Technology in Education & the Computer Science Teachers
Association. (2011). Operational definition of computational thinking for K-12.
Retrieved from http://www.iste.org/docs/ct-documents/computational-thinking-

operational-definition-flyer.pdf?sfvrsn¼2
Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all

learners in school wide computational thinking: A cross case qualitative analysis.

Computers & Education, 82, 263–279.
Johnson, H., & Cotterman, M. (2013, November). Collaborative efforts to put the ‘E’ back

in STEM (p. 3). Arlington, VA: NSTA.
Jona, K., Wilensky, U., Trouille, L., Horn, M. S., Orton, K., Weintrop, D., & Beheshti,

E. (2014). Embedding computational thinking in science, technology, engineering, and
math (CT-STEM). Presented at the Future Directions in Computer Science
Education Summit Meeting, Orlando, FL.

Kafai, Y.B., & Burke, Q. (2014). Connected Code: Why children Need to Learn
Programming. MIT Press.

Kazakoff, E., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based inten-

sive robotics and Programming workshop on sequencing ability in early childhood.
Early Childhood Education Journal, 41(4), 245–255.

Koh, K. H., Basawapatna, A., Bennett, V. & Reppening, A. (2010, September). Towards

the automatic recognition of computational thinking for adaptive visual language
learning. In 2010 IEEE symposium on visual languages and human centric computing
(pp. 59–66). New York, NY: IEEE.

Kolb, D. (1984). Experiential learning: Experience as the source of learning and develop-

ment. Englewood Cliffs, NJ: Prentice Hall.

www.csta.acm.org/Curriculum/sub/CompThinking.html
www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf?sfvrsn2
www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf?sfvrsn2
www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf?sfvrsn2


Kolb, D. (1999). The Kolb Learning Style Inventory, Version 3. Boston, MA: Hay
Group.

Lee, Y. J. (2011). Scratch: Multimedia programming environment for young gifted
Learners. Gifted Child Today, 34(2), 26–31.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., & Werner, L. (2011).

Computational thinking for youth in practice. ACM Inroads, 2, 32–37.
Lewis, C. M. (2011). Is pair programming more effective than other forms of collabor-

ation for young students?. Computer Science Education, 21(2), 105–134.
Lewis, A., & Smith, D. (1993). Defining higher order thinking. Theory Into Practice, 32,

131–137.
Liao, Y. K., & Bright, G. (1991). Effects of computer-assisted instruction and computer

programming on cognitive outcomes: A meta-analysis. Journal of Educational

Computing Research, 7(3), 251–268.
Metz, S. S. (2007). Attracting the engineering of 2020 today. In R. Burke, M. Mattis, & E.

Elgar (Eds.), Women and Minorities in Science, Technology, Engineering and

Mathematics: Upping the Numbers (pp. 184–209). Northampton, MA: Edward Elgar
Publishing.

Mioduser, D., Levy, S., & Talis, V. (2009). Episodes to scripts to rules: Concrete abstrac-

tions in kindergarten children’s explanations of a robot’s behaviors. International
Journal of Technology and Design Education, 19(1), 15–36.

Moomaw, S. (2012). STEM begins in the early years. School Science and Mathematics,
112(2), 57–58.

Next Generation Science Standards https://www.nextgenscience.org/ (accessed 15
November 2017)

National Academy of Sciences. (2007). Beyond bias and barriers: Fulfilling the potential of

women in academic science and engineering. Washington, DC: The National Academies
Press.

National Academy of Sciences. (2010). Rising above the gathering storm, revisited: Rapidly

approaching category 5. Washington, DC: The National Academies Press.
National Research Council. (2012). A framework for K-12 science education: Practices,

crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
Organisation for Economic Co-operation and Development. (2015). Schooling rede-

signed: Towards innovative learning systems Retrieved from http://www.oecd-ili-
brary.org/education/schooling-redesigned_9789264245914

Oregon Department of Education. (2015). School and district report cards. Retrieved from

http://www.ode.state.or.us/data/reportcard/reports.aspx
Papert, S. (1991). Situative constructionism. In I. Harel & S. Paper (Eds.),

Constructionism (pp. 1–11). Norwood, NJ: Ablex.

Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). Thousand
Oaks, CA: Sage.

Reppening, A., Webb, D., & Ioannidou, A. (2010, March). Scalable game design and the

development of a checklist for getting computational thinking into public schools. In:
Proceedings of the 41st SIGCSE technical symposium on computer science education
(SIGCSE’ 10) (pp. 265–269). New York, NY: ACM Press.

https://www.nextgenscience.org/
http://www.oecd-ilibrary.org/education/schooling-redesigned_9789264245914
http://www.oecd-ilibrary.org/education/schooling-redesigned_9789264245914
http://www.ode.state.or.us/data/reportcard/reports.aspx


Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan,
K., . . .Kafai, Y. (2009). Scratch: Programming for all. Communications of the ACM,

52(11), 60–67.
Rushkoff, D. (2010). Program to be programmed: Ten commands for a digital age. New

York, NY: O/R Books.

Scaffidi, C., & Chambers, C. (2012). Skill progression demonstrated by users in the
Scratch animation environment. International Journal of Human-Computer
Interaction, 28(6), 383–398.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating

computational thinking with K-12 science education using agent-based Computation:
A theoretical framework. Education and Information Technologies, 18, 351–380.

Strauss, C. (1992). What makes Tony run? Schemas as motive reconsideration.

In R. D’Andrade & C. Strauss (Eds.), Human Motives and Cultural Models
(pp. 191–224). Cambridge, England: Cambridge University Press.

Strauss, C., & Quinn, N. (1997). A cognitive theory of cultural meaning. Cambridge,

England: Cambridge University Press.
Weintrop, D., Beheshti, E., Horn, M. S., Orton, K., Joan, K., Trouille, L., & Wilensky,

U. (2014, April). Defining computational thinking for science, technology, engineering,

and math. Philadelphia, PA: Poster presented at the Annual Meeting of the American
Research Association, PA.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012, February). The fairy
performance assessment: Measuring computational thinking in middle school. In

Proceedings of the 43rd ACM technical symposium on computer science education
(pp. 215–220). New York, NY: ACM.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

Yadav, A., Stephenson, C., & Hong, H. (2017). Computational thinking for teacher
education. Communications of the ACM, 60(4), 55–62.

Author Biography

Yune Tran is an associate professor of Education at George Fox University. Her
research interests include teacher efficacy and identity, ESL methods and prac-
tices, diverse learners, computational thinking in elementary contexts, and pre-
service teacher preparation.


	Digital Commons @ George Fox University
	2018

	Computational Thinking Equity in Elementary Classrooms: What Third-Grade Students Know and Can Do
	Yune Tran
	Recommended Citation


	Computational Thinking Equity in Elementary Classrooms: What Third-Grade Students Know and Can Do

