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Conceptual Models for Integer Addition and Subtraction 

 

Introduction 

Teachers often use contexts for helping students think about and make sense of integers 

and their operations (e.g., Battista, 1983; Janvier, 1985; Liebeck, 1990; Linchevski & Williams, 

1999; Schwartz, Kohn, & Resnick, 1993; Tillema, 2012; Whitacre et al., 2011). Upon 

examination of Grade 5 and 6 California-adopted textbooks, Whitacre et al. (2011) found that 

nearly 90% of the textbooks used money, elevation, and temperature as contexts for instruction. 

Even the authors of the Common Core State Standards for Mathematics (National Governors 

Association Center for Best Practices & Council of Chief State School Officers [NGA & 

CCSSO], 2010) suggest credit or debit, temperature, elevation, as well as electron charges, for 

use with integers. But are students able to make sense of integers with these traditionally 

advocated contexts (e.g., money, elevation, temperature)?  

Like others, we questioned if the recommended use of contexts with integer instruction is 

relevant or meaningful for students. Despite the prevalent use of contexts with integer 

operations, contexts for integers have often been criticized for being contrived (Ball, 1993). This 

may be related to limitations in physical embodiments of the integers (Martínez, 2006; Peled & 

Carraher, 2008; Vig, Murray, & Star, 2014). Even when contexts are not contrived, students may 

not naturally use integers when solving problems with typical contexts for integer addition and 

subtraction—like borrowing or owing money (Whitacre et al., 2015). Noticing the complicated 

nature of integers and contexts, we turned our attention to the literature on student thinking about 

integers. This literature (e.g., Bishop, Lamb, Philipp, Whitacre, Schappelle, & Lewis, 2014; 

Bishop, Lamb, Philipp, Whitacre, & Schappelle, 2016; Bofferding, 2014) has demonstrated that 
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students are capable of robust reasoning about integers, but is mostly situated in how students 

make sense of integers in symbolic settings (e.g., how they solve problems like -2 – -5 = ☐) or 

pre-determined contexts.  

 

A Survey of the Literature on Integers and Contexts 
 
Challenges of Thinking about Integers within Contexts  
 

One challenge is that although certain contexts or situations may evoke the use of 

negative integers with adults, students may not perceive the need for the use of negative integers 

(Mukhopadyhyay, Resnick, & Schauble, 1990; Peled & Carraher, 2008; Whitacre et al., 2015). 

Whitacre et al. (2015), for example, found that many students solved a debit and credit problem, 

in which negative integers are typically used, with positive integers only. In that study, middle 

and high school students correctly solved the debit and credit problem with positive integers, but 

they were unable to connect the negative integers to the contexts. Peled and Carraher (2008) 

reported a similar situation in which prospective teachers used only natural numbers for correctly 

solving a problem about the difference in elevation between two cities—one below sea level and 

one above sea level—and did not apply negative integers. 

Another challenge with understanding the role of contexts is that students often draw on 

unconventional contexts (Mukhodpadhyay, 1997)—contexts not typically in curriculum or 

standards. Students are capable of using integers productively in unconventional contexts 

(Whitacre et al., 2012). The students in Mukhopadhyay’s (1997) study invented stories without 

opposites that did not support integer addition and subtraction, such as representing socks as 

negative numbers and shoes as positive numbers. Yet, Whitacre et al. (2012) demonstrated that 
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young students productively made sense of integers in the unconventional context of happy and 

sad thoughts, where the students did use opposites.  

Yet, even if students understand connections between the contexts and integer operations, 

their understanding may not transfer to other mathematical contexts. For example, 

Mukhopadyhyay, Resnick, and Schauble (1990) presented students with a story related to a 

person owing money. The majority of students in the study understood the context and could 

accurately compute the person’s debt. However, when presented with parallel equations out of 

that context, students were less successful in correctly solving the problems. A related challenge 

is that the ways that students use the integers may not be directly related to the contexts. For 

instance, when Chui (2001) presented students with a stock market task, students used metaphors 

of motion to represent opposing objects for these monetary transactions. This way of solving is 

not directly parallel to the situation given.  

Additionally, students find posing stories for integer addition and subtraction number 

sentences to be challenging (Kilhamn, 2008; Mukhopadhyay, 1997; Rowell & Norwood, 1999). 

Mukhopadhyay (1997) studied children’s use of storytelling as a sense-making activity of 

negative numbers. She asked 32 students in Grades 5 through 8 to solve expressions in sets (e.g., 

-3 + -4, -3 – 4, -3 – +4) involving negative integers and then to tell stories that matched the 

expressions. Most students in the study found the task of creating stories for equations 

troublesome. They often created their stories with uncertainty and recognized that their stories 

did not make sense or match the given equation. Some students changed an equation to an 

equivalent expression (e.g., -3 – -4 to -3 + - 4) before they could create a story. Although 

students in the study could successfully solve integer equations (i.e., procedurally obtain correct 

solutions), the results of Mukhopadhyay’s study highlight that creation of stories for the 
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equations proved to be difficult—potentially highlighting a gap in their conceptual 

understandings. Peled and Carraher (2008) reported on prospective teachers’ abilities to write a 

story problem for 2 – 7. Prospective teachers mostly used money as a context, followed by height 

and temperature. Although four of 15 prospective teachers maintained the structure of the 

expression 2 – 7, seven of the prospective teachers wrote stories that coincided with the 

expression 7 – 2 and the rest did not answer. Similarly, Kilhamn (2008) asked 99 prospective 

teachers to pose stories for integer number sentences. Kilhamn found that only a small number of 

the prospective teachers used a model or context to explain the mathematics rather than posing a 

story—indicating the challenges of connecting integers to contexts. Those who used a model or 

context did so with either number lines or temperature to explain their solution. Kilhamn 

speculated that number lines and temperatures represent models and contexts, respectively, that 

are more intuitive for students.  

We know that both children and prospective teachers find posing stories for integer 

addition and subtraction challenging (e.g., Kilhamn, 2008). They may pose unrealistic stories 

(Mukhopadhyay, 1997) and change the structure of the number sentences (Rowell & Norwood, 

1999). When working with integer operations in contexts, students may not think about the 

integers as adults do (e.g., Bishop, Lamb, Philipp, Whitacre, Schappelle, & Lewis, 2014; Bishop 

et al., 2016; Bofferding, 2014). Students may be unable to transfer integer understanding in one 

context to another context (Mukhopadyhyay et al., 1990). They may use metaphors that are not 

parallel with a given equation and may need to think about integers or integer equations in 

different ways in order to work within a particular context (Chui, 2001). We know that students 

struggle with relating integers to contexts (Mukhopadyhyay, 1997) and often do not use negative 

integers when given a conventional context, like debt (Whitacre et al., 2015).  



 

	
	

5 

 

Problem Posing: Uncovering Conceptual Structures about Integers  

Although understanding integer operations is complex (e.g., Piaget, 1948) and 

investigating thinking about integers within contexts is even more complex (e.g., Whitacre et al., 

2015), we need to look more intensely into the ways that students pose stories for integers and 

the conceptual structures or processes behind the problem posing (Bell, 1984; Cai, Hwang, Jiang, 

& Silber, 2015). Important prior work has identified ways that students think about integers 

(Bofferding, 2014), especially with symbolic-only problems (Bishop, Lamb, Philipp, Whitacre, 

Schappelle, & Lewis, 2014; Bishop et al., 2016).  However, we need to look more closely at the 

ways students think about and use integers as they apply contexts to them, especially as they may 

not use integers when given ready-made contexts (Whitacre et al., 2015). Identifying the ways 

that students think about and use integers as they apply contexts to them provides insight into 

students’ conceptual structures (Bell, 1984) and cognitive processes (Cai et al., 2015), rather than 

just their strategies or procedures. A conceptual structure in this study is interpreted as the 

underlying mathematical thinking behind posing stories (Bell, 1984; Cai et al., 2015).  

Posing stories about integer addition and subtraction is a way to make sense of student 

thinking about integers and contexts (e.g., Mukhopadhyay, 1997; Roswell & Norwood, 1999), a 

form of problem posing (e.g., English, 1997, 1998), and the stories posed are influenced by these 

conceptual structures (Cai et al., 2015). Because posing stories is cognitively demanding, it 

provides perspective into the ways that student think about and use integers—providing insight 

into students’ thinking (e.g., Cai et al., 2015; English, 1997, 1998). Posing stories for integer 

addition and subtraction number sentences is a semi-structured type of problem posing 

(Stoyanova & Ellerton, 1996). The present study reported here extends the Mukhopadhyay 
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(1997) study by characterizing the nuances about the ways that students pose stories for integer 

number sentences and the broad ways that the students thought about and used the integers as 

they posed stories—a need in the field not only for thinking about integer addition and 

subtraction, but also for problem posing (Cai et al., 2015). Roswell and Norwood (1999) reported 

that prospective teachers changed the number sentence itself before posing the story and 

Mukhopadhayay (1997) showed that students did not think their stories matched their number 

sentences. These results indicate that part of describing the thinking that the students used as they 

posed stories requires more in depth descriptions of the ways that students posed the stories—as 

a way to gain “fine-grained knowledge of how they go about posing those mathematical 

problems” (Cai et al., 2015, p. 14). In this study, we examined how students connected integers 

to various contexts in order to extend the literature on students’ thinking about integers. Because 

the aim of this present study is describing the thinking of the students as they posed stories and 

how they posed these stories, this points to the need to build models of thinking about integer 

addition and subtraction.  

Previous frameworks for thinking about integers have each been developed by studying 

children or students’ thinking within symbolic settings (e.g., solving problems like 2 – ☐ = -5 or 

2 – -5 = ☐), either primarily or exclusively (e.g., Bishop et al., 2010, 2011; Bishop, Lamb, 

Philipp, Whitacre, & Schappelle, 2014; Bishop, Lamb, Philipp, Whitacre, Schappelle, & Lewis, 

2014; Bofferding, 2010, 2011, 2012, 2014; Gallardo, 1994, 1995, 2002; Peled, 1991). Gallardo 

(2002) provided a framework for thinking about integers; Bofferding (2014) developed a set of 

children’s mental models for order and value of the integers; and, Bishop, Lamb, Philipp, 

Whitacre, Schappelle, and Lewis (2014) generated a framework for the reasoning of children for 

integer addition and subtraction.  
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A Need for Building of Models of Integer Addition and Subtraction from Problem Posing 

Given the robust challenges of students’ thinking about integers within contexts (e.g., 

Whitacre et al., 2012, 2015), we still need insight into students’ thinking about integers as they 

connect the integers to contexts. Students do not naturally employ use of negative integers when 

given contexts like debts and credits (Whitacre et al., 2015). Contexts used with negative 

integers are often criticized for being contrived (Ball, 1993), yet students are able to use negative 

integers with contexts that are not typically used—such as happy and sad days (Whitacre et al., 

2012). The challenges are two-fold: use of contexts with integers is complicated, and current 

frameworks about thinking about integers are built from symbolic settings singularly. We need to 

explore the ways that students connect integers to contexts and create a framework of thinking 

generated from students’ use of contexts as well, especially given the complicated nature of 

integers in contexts.  

 

Theoretical Groundings for Building Models of Student Thinking 

Our theoretical grounding for building models of student thinking from posed stories is 

influenced by the desire for insight into conceptual structures of students (Bell, 1984; Cai et al., 

2015) as they pose stories for integers. These models are generated through exploratory model 

building (e.g., Cobb & Steffe, 1983; Thompson, 1982).   

Conceptual Structures: Thinking Behind Problem Posing  

When a student applies a particular context to an integer addition and subtraction number 

sentence, what is the conceptual structure that the student is drawing on? Bell (1984), one of the 

early researchers on student thinking about integers, wrote: 
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It is also becoming clear (though I am not sure that this has been documented) that 

situations which are structurally identical when fully mathematized are by no means 

similar when first perceived; for example, money and temperature problems are 

differently perceived, although they both involve states and changes in directional 

quantities. It follows that we need to consider much more seriously than we have 

previously done, the development of conceptual structures in one context, then another, 

then perhaps exploring isomorphism. (p. 56) 

Bell (1984) advocated for investigations into the conceptual structures as students used contexts 

with integer addition and subtraction. Decades later, Cai, Hwang, Jiang, and Silber (2015) 

similarly advocated for investigations into the conceptual structures behind problem posing. 

Also, Bell (1984) highlighted that although students may use different contexts some of these 

different contexts may support singular mathematical ways of thinking. That is, there may be an 

“isomorphism” behind ways of thinking about integers in different contexts.  

Although we know about the challenges that students encounter when thinking about or 

using the integers within a given context (e.g., Whitacre et al., 2012; 2015), we know little about 

the reverse—how students apply contexts when given integers. We need insight into the 

conceptual structures behind students applying contexts to integer addition and subtraction. 

Because we seek, in this study, to build models of thinking (e.g., Steffe & Thompson, 2000; 

Ulrich et al., 2014) that highlight the conceptual structures (Bell, 1984; Cai et al, 2015), we name 

these models of thinking that we explored: conceptual models of integer addition and 

subtraction. 

 

Tenets for Model Building and a Framework for Constructing Models  
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Thompson (1982) stated that researchers “must build models that would substitute for the 

mathematical student so that he (the researcher) may perceive the world of mathematics through 

the (modeled) student’s eyes” (p. 152). These models are descriptions of “thinking about others’ 

thinking” (Ulrich et al., 2014, p. 329). Thompson (1982) provided five questions for the 

guidance of building models of student thinking: 

1. “Does the report specify a framework for constructing models?”  

2. “Are the prototypes made clear?” 

3. “Is the framework grounded in data?” 

4. “Are the models viable?” 

5. “Are the models sufficient?” (p. 160).  

These questions guided our model building.  

Semi-structured type of problem posing (Stoyanova & Ellerton, 1996) is recognized as a 

way for accessing the students’ conceptions of integer addition and subtraction (Cai et al., 2015). 

Using semi-structured problem posing is the first part of identifying a framework for building 

models specified by Thompson (1982). Semi-structured problem posing includes providing 

students with an opportunity to make sense of mathematics in an open situation. Having students, 

for example, pose stories for open number sentences (Mukopadhyay, 1997) is this type of semi-

structured problem posing. By providing the structure of the open number sentences, we ensured 

students’ opportunities of using negative integers, which they might not have otherwise (see, 

e.g., Whitacre et al., 2015). Freedom in the choice of context as students pose stories provides 

opportunities for the students to draw upon their desired conceptual models. Furthermore, part of 

the framework for building conceptual models includes the assumption that conceptual structures 

may be uncovered as students pose integer addition and subtraction stories with a variety of 
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contexts (Cai et al., 2015). More specifically, a variety of stories with different contexts may be 

produced with a similar conceptual structure (Bell, 1984). Although different contexts are 

perceived differently, a singular conceptual structure may be behind the variety of posed stories 

(Bell, 1984). The framework includes the examination of stories posed for integer open number 

sentences as insight to the conceptual structures behind problem posing (Cai et al., 2015). In this 

study, with the aim of generating conceptual model descriptions (Cobb & Steffe, 1983), 

conceptual models may be uncovered through examination of posed stories for integer addition 

and subtraction number sentences with attention to tenets of model building (Thompson, 1982).  

Research Question 

Examining students’ posed stories led to the following research question: What 

conceptual models of integer addition and subtraction descriptions can be generated from 

students’ posed stories?  

 

Method 

One way for exploring how students connect integer addition and subtraction to contexts 

is through a generative study. Generative studies “allow investigators to develop new categories 

for description” (Clement, 2000, p. 558). Because students find integrating integers with contexts 

challenging (e.g., Chui, 2001) and students do not necessarily use negative integers when given a 

context (Whitacre et al., 2015), a generative study (Clement, 2000) provides the opportunity for 

an exploratory study in the creation of an initial set of models (e.g., Steffe & Thompson, 2000; 

Thompson, 1982). A generative study offers space for descriptions about how students think 

about contexts in the realm of integer addition and subtraction, which may be different than how 

they reason in symbolic situations. Clement (2000) described, “The purpose of a generative 
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study is to generate new observation categories and new elements of a theoretical model in the 

form of descriptions of mental structures or processes that explain the data” (p. 557). Thus, a 

generative study provides freedom for the researcher in the exploration of thinking about integer 

addition and subtraction in relationship to contexts, in order to develop a set of descriptions 

about students’ thinking. 

Participants 

Six eighth-grade students from a rural public school in a Midwest region of the United 

States participated in this study. We examined how integers are applied to contexts. Because 

students prior to instruction may not know how to apply negative integers to contexts or would 

possibly create only unconventional ways to apply the integers to the contexts, we decided to 

interview students that had experience with integers prior to our study. Furthermore, we selected 

the six participants for the study because the students’ mathematics teacher considered them to 

be advanced mathematically and thus we thought they might be more apt than their peers to 

provide a variety of stories for analysis. The teacher shared that the students had previous 

experiences operating with the integers and included contexts (i.e., debit or credits, electrons, 

elevation, temperature) advocated by the authors of the Common Core State Standards for 

Mathematics (NGA & CCSSO, 2010). The students’ perceived mathematical status provides an 

interesting perspective into investigating conceptions of integers because they were considered to 

be mathematically proficient. Additionally, these students provided insight into students’ 

thinking after classroom instruction about integers. We were satisfied with the small sample of 

students because we viewed this study as an initial study on generating models, with the 

expectation that there would be follow-up studies in later model refinement (Clement, 2000).  

Interviews 
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For generating models of student thinking, Thompson (1982) emphasized that these 

should be “grounded in data” (p. 160). Thus, the first author employed a semi-structured clinical 

interview with each of the six eighth-grade students (Goldin, 2000). Students posed a story for 

each integer addition or subtraction open number sentence. The first two open number sentences 

given to students included only positive integers. These problems were given to students first to 

determine if they struggled with problem posing. After students demonstrated proficiency with 

posing stories for the open number sentences with positive integers only, students were asked to 

pose stories for nine to 10 open number sentences involving both positive and negative integers. 

Each student was interviewed once with interviews lasting approximately 30 minutes.  

Data Analysis 

Generative studies often lead to the interpretative analysis of transcripts of clinical 

interviews (Clement, 2000). For the analysis of research questions, Clement (2000) suggested a 

generative analysis for exploratory studies in model development in order to generate a set of 

descriptions about thinking. To do this, we first transcribed the interviews, generated themes and 

descriptions for the conceptual models, and continuously negotiated the themes and descriptions, 

developing the clarity of the models (Thompson, 1982). We then coded each of the stories with 

our conceptual model descriptions and wrote student profiles as a check on the sufficiency of the 

models (Thompson, 1982). Our generative analysis aligned with analyses recommended for 

second-order models (see, e.g., Thompson, 2008) because we spent significant time in the 

continuous development of the models and descriptions, with over five iterations of reflective 

development of the descriptions. We will give more insight into building model descriptions in 

the next section and describing how the students used conceptual models in the results. 

Building Model Descriptions 
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For analysis of our research question, each individual story corresponding to an open 

number sentence constituted the unit of data. We examined each of the 56 stories, generating 

emergent themes about ways that students used, or possibly conceptualized, the integers in the 

stories. We “formulated an initial description of the subject’s mental structures, goals, and 

processes that provides an explanation for the behavior exhibited in the transcript” (Clement, 

2000, p. 575). These initial descriptions constituted themes that emerged from within each story 

posed (e.g., balancing integers, using debits and credits, using movements). After we looked for 

emerging themes individually and collectively, we discussed which themes would be used for 

generating descriptions of conceptual models. We then considered and discussed the meanings of 

zero, positive, and negative integers for each particular story and across stories. We drew upon 

Thompson’s (1982) question about model building: “Are the prototypes made clear?” (p. 160). 

As we generated descriptions from themes and sought to produce clarity in model definitions, the 

discussions about developing descriptions included unpacking how the students made use of 

positive and negative integers. Some of these discussions compared how the students 

incorporated positive and negatives integers as gains and losses similarly in different contexts 

(e.g., losing a pencil is similar to losing a penny). We discussed how the students used the 

integers in ways that balanced each other out (see, e.g., Whitacre et al., 2012). But, we noticed 

this differed from their use of debits and credits, and we needed to distinguish that in the 

descriptions of the models. That is, the students treated comparing good and bad deeds during a 

week (e.g., comparing two objects) differently than losing pencils (e.g., applying a change of 

quantity to one object). We also discussed how the students used ideas of movement and 

travelling (see, e.g., Thompson & Dreyfus, 1988; Ulrich, 2012) and how those ideas also seemed 

different than the thinking one might use to describe losing a pencil or comparing good and bad 
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deeds during a week. To help solidify these differences in thinking, with clarity of the models in 

the forefront, we distinguished the roles of the positive integers, negative integers, and zero that 

the students attributed in their posed stories in our descriptions. 

As we worked on transforming these themes into descriptions, we noticed one of the 

students’ stories did not fit into the initial themes we generated (i.e., balance, debits and credits, 

movement) because the story supposed integer use in a positional way. This positional use of 

integers did not make use of movement, balance, or debits and credits. This revealed that our 

model descriptions were not sufficient enough (Thompson, 1982). Although this was only a 

singular story in our data, the research literature (Gallardo, 2002) and historical use of integers 

(e.g., Day & Thomson, 1843) supported the mathematical thinking behind posing this type of 

story. From this, we created a description of a model in which the integers are used in relative 

positions and created a set for supporting descriptions of models that sufficiently described all of 

our data. As we discussed how the students used the positive integers, negative integers, and zero 

differently in these various posed stories, we created and refined descriptions that emphasized 

this.  

 

Conceptual Models Built from Posed Stories 

The following conceptual models emerged from this study: Bookkeeping, 

Counterbalance, Relativity, and Translation. These conceptual models for integers and integer 

addition and subtraction represent ways that the students used and thought about integer addition 

and subtraction, and ultimately negative numbers.  

Bookkeeping 
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A conceptual model of Bookkeeping describes integers used with gains and losses. An 

example of the Bookkeeping conceptual model is the borrowing and receiving of money. Debit 

or credits of money are a prominent context when discussing negative integers (e.g., Whitacre et 

al., 2012); however, the Bookkeeping conceptual model represents a gain and loss of anything 

and is not necessarily limited to the context of money. For example, gains and losses can be 

conceptualized with the owing and gaining of candy bars or wanting and receiving baseball 

cards. Zero in the Bookkeeping conceptual model represents either no gain or loss. Examples of 

the Bookkeeping conceptual model are illustrated in these students’ stories: 

Isaac: Lewis was not really good at keeping his homework coming in. He owed two 

assignments already. And later on in the day, he realized he still had three more 

assignments due. And in total he owed five assignments. (-2 – 3 = c) 

Wesley: I wanted seventeen baseball cards and I got twelve. Now, I want so many more. 

(-17 + 12 = c) 

Isaac used the positive integers to represent turning in assignments and the negative integers to 

represent owing assignments. Wesley’s use of integers as gain or losses is highlighted by the 

“want” of seventeen baseball cards and the “gain” of twelve cards. Bookkeeping appeared to be 

the most used conceptual model by the students in this study (used in 49 of 56 stories, see Table 

2).  

Counterbalance 

A conceptual model of Counterbalance describes use of integers that balance or “cancel” 

each other out. Positive and negative integers in Counterbalance are not just opposites, but 

opposites that balance and neutralize each other. The zero in the Counterbalance conceptual 

model indicates neutralization. The distinguishing element of the Counterbalance model is that 



 

	
	

16 

the quantities always remain present, even when neutralized. For example, consider three 

electrons (-3) and three protons (+3) that provide an electrical charge of 0. The corresponding 

mathematical equation is -3 + 3 = 0. The electrons, with a charge of -3, and the protons, with a 

charge of +3, still exist despite the neutralization. This existence of the quantities that remain, but 

are neutralized, differentiates this way of thinking from Bookkeeping or the other models. 

Students did not use the counterbalance conceptual model frequently in this study (2 out of 56 

stories, see Table 2) and is illustrated in the stories below:  

Isaac: Joe did some bad things in the past. And, he’s trying to even out the scales by 

doing good things. So far, he still has five bad things to re-pay for what he’s done. And, 

he can think of 26 good deeds. He does the 26 and by the end of week he’s evened out the 

scales and did more than he expected. He did 21 more good deeds. (-5 + c = 21) 

Joseph: You’re playing football and you had 18 kids wearing white jerseys and, you’d 

have to have 13 kids wearing black jerseys. The white team has 18 jerseys and the black 

team has 13 jerseys. And, the neutral team, which would be the equals, would only have 5 

kids left. (18 + c = 5) 

In Isaac’s story, the integers are being used in a way that creates balance—a good deed balances 

a bad deed. Although these deeds “evened out the scales,” the deeds are still present. Similarly, 

with Joseph’s story, the football players wearing black jerseys balance the football players 

wearing white jerseys.   

Relativity 

A conceptual model of Relativity describes the use of integers with comparative positions 

to an unknown referent. With Relativity, the unknown referent may be treated as zero, and the 

integers are descriptions of reference from that zero. Consider, for example, the temperature 
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scale, specifically -2 degrees in both Celsius and Fahrenheit. Both are measures from the 

positions of zero and represent different temperatures from each other. The decision of the 

temperature scale is not something fixed. With Relativity, the zero is not an absence of a 

quantity. Rather, the zero in the Relativity conceptual model is an arbitrarily or specifically 

selected point of comparison. Students did not draw on Relativity frequently in this study. In 

fact, the example below is the only use of Relativity demonstrated in this study:  

Joseph: I guess you could do baseball … Say you are down [five] runs in the first inning 

… And you end up losing by fifteen runs. So you would have to have ten runs in the other 

innings to be down by fifteen runs. (-5 + c = -15) 

In this story, the score of the actual game is not known. Rather, the negative integers are used in 

a way relative to a tied game. This unknown score of the tied is the reference or the chosen zero. 

The score could have been 10 to 10, 22 to 22, or an infinite number of possibilities. The integers 

were used in comparative ways to this unknown referent. Although there was only a singular use 

of the Relativity conceptual model this study, there is historical and evidence of mathematical 

use of integers as relative numbers (e.g., Gallardo, 2002).  

Translation 

A conceptual model of Translation describes the use of integers when they are treated as 

directed numbers or vectors. With the Translation conceptual model, integers are used to shift 

any kind of mathematical objects (e.g., a number, a point, a curve). In contrast to the Relativity 

conceptual model, which does not include movement, the Translation conceptual model emerges 

from the contexts of traveling or moving about in a linear model, coordinate plane, or three-

dimensional space. The zero in this conceptual model is a zero vector, or no movement. Similar 

to Relativity, the zero can also represent a relative number with the positive and negative integers 
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indicating a translation in one direction or another from the relative zero. Students used the 

Translation conceptual model in 4 of the 56 stories. All four examples using a Translation 

conceptual model in this study are illustrated below:  

Joseph: Let’s say, you are going to your family’s house for Christmas and you’re 

travelling down the road… the numbers would be the miles and you accidentally turned 

in the wrong direction. And so the further and further away would be the larger the 

negative number. So, first you take a right and go negative fourteen miles away. And 

then, you take another right and go negative seven miles away. So total you are negative 

twenty-one miles away. (-14 + -7 = c) 

Drake: Ok, a car, it is a racecar, is behind the finish line two feet. It goes back another 

three feet and is now negative five feet behind the finish line. (-2 – 3 = c) 

Drake: An airplane is eight miles above sea level and then goes twenty miles down. And 

is now negative twelve miles below sea level. (8 – 20 = c) 

Drake: So the shark is negative fourteen feet below sea level and goes up twenty feet. He 

is then jumping out of the water, six feet about the water. (c – -20 = 6) 

In Joseph’s story the integers represent linear movement in the right direction (towards the 

family’s house) or the wrong direction (away from the family’s house). Similarly, Drake’s story 

incorporates linear movement with a sharks and airplanes travelling vertically, moving up and 

down, and a racecar moving horizontally backwards and forwards. Distinguished from 

Relativity, the referent is known rather than unknown. That is, in both Joseph’s and Drake’s 

stories, the referent is established. The referent or zero for Drake’s shark story, for example, is 

sea level. Albeit this is still a relative use of the integers, this is a more positional use related to 
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making sense of movement, in contrast to Joseph’s baseball story that used relativity without 

movement, and we described this as using a Relativity conceptual model.  

 

Summary of the Conceptual Models for Integer Addition and Subtraction 

The conceptual models for integer addition and subtraction represent ways that these 

students used the integers. These ways of thinking about and using the integers are summarized 

in Table 1.  

Table 1 

The Conceptual Models for Integer Addition and Subtraction  

Conceptual Model  Description of Model 

Bookkeeping  A conceptual model of Bookkeeping describes 
using integers with gains and losses. Zero in 
the Bookkeeping conceptual model represents 
either no gain or loss. 

 
Counterbalance  A conceptual model of Counterbalance 

describes use of integers that balance or 
neutralize each other out. Positive and 
negative numbers in Counterbalance are not 
just opposites, but opposites that balance or 
neutralize. The distinguishing element of the 
Counterbalance model is that the quantities 
always remain present, even when 
neutralized. This existence of the quantities 
that remain, but are neutralized, differentiates 
this way of thinking from Bookkeeping or the 
other models. Zero in the Counterbalance 
conceptual model indicates neutralization. 
 

Relativity  A conceptual model of Relativity describes 
the use of integers with comparative positions 
to an unknown referent. With Relativity, the 
unknown referent may be treated as zero, and 
the integers are descriptions of reference form 
that zero. Consider, for example, the 
temperature scale. With Relativity, the zero is 
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not an absence of a quantity. Rather, the zero 
in the Relativity conceptual model is an 
arbitrarily or specifically selected point of 
comparison. 
 

Translation  A conceptual model of Translation describes 
the use of integers when they are treated as 
directed numbers or vectors. With the 
Translation conceptual model, integers are 
used to shift any kind of mathematical objects 
(e.g., a number, a point, a curve). In contrast 
to the Relativity conceptual model, which 
does not include movement, the Translation 
conceptual model often emerges from the 
contexts of traveling or moving about a linear 
model, coordinate plane, or three-dimensional 
space. The zero in this conceptual model is a 
zero vector, or no movement. Similar to 
Relativity, the zero can also represent a 
relative number with the positive and negative 
numbers indicating a translation in one 
direction or another from the relative zero. 
 

 

How Students Posed Stories and the Relationship to Conceptual Models 

In the following section, we provide two profiles of the six students that participated in 

this study.  We highlight one student who posed stories that supported one conceptual model and 

highlight another student who posed stories that supported a variety of conceptual models. Table 

2 highlights the conceptual models that all of the students in this study used. Bookkeeping was 

used more than other conceptual models (see Table 2) and is difficult to distinguish from 

Counterbalance, which is why Isaac and the Bookkeeping Conceptual Model (and his singular 

use of Counterbalance) is the first profile. Similarly, half of the students used more than one 

conceptual model, which is why Joseph and how he used different conceptual models is 

highlighted in the second profile. The various uses of contexts, changes of number sentence 
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structure, and realism are described for each student to better highlight the nature of the 

conceptual models.  

 

Table 2  

Conceptual Models for Integer Addition and Subtraction used by the students for each number 

sentence (B = Bookkeeping; C = Counterbalance; T = Translation; R = Relativity)  

 

Isaac and the Bookkeeping Conceptual Model  

In Figure 1 we present the stories Isaac posed per number sentence and conceptual 

model. Isaac posed nine stories using the Bookkeeping conceptual model and one story using the 

Counterbalance conceptual model (see Isaac Story 3 [IS3]). Five of the nine stories determined 

to draw upon Bookkeeping pertained to money, a conventional context with integers. The other 

four contexts for Bookkeeping were not money, indicating a flexible use of integers with gains 

and losses beyond money. The other contexts he used included: worms for fishing (see IS1), 

good and bad deeds (see IS3), games (see IS5), hair loss (see IS6), and assignments (see IS8). 

 18 + c 
= 5 

-17 + 
12 = c  

-14 +    
-7 = c  

-5 + c 
= -15 

8 – 20 = 
c  
 

5 – c = 
17 

-2 – 3 = 
c 

c –      
-20 = 6 

-10 –    
-22 = 
c 

-5+ c 
= 21 

Joseph C B T R B B B B B Not 
Asked 

Hailey B B B B B B B B B Not 
Asked 

Drake B B B B T B T T B Not 
Asked 

Dana B B B B B B B B B B 

Isaac B B B B B B B B B C 

Wesley  B B B B B No Story 
Provided 

B B B B 
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His use of deeds (see IS3) was different from some of the other contexts. In this story, Isaac used 

the integers to represent good and bad deeds, in which the good and bad deeds balanced each 

other out. Because Isaac used the integers in a way that balanced each other out, he drew on a 

Counterbalance conceptual model as he posed this story. This use of good and bad deeds is not a 

typical context used in curricular materials or standards.  

Equation Story Conceptual 
Model 

18 + c = 5 

[IS1] Benny decided to fish. He had 18 worms in his can to 
start out with for his fishing trip. [A]s Benny was riding his 
bike to the river he lost an amount of worms. When he got 
to the river he only had five worms. When he wanted to 
know how many worms he lost, he took 18 minus 5 and got 
13. So, Benny finished his fishing trip sadly without the 18 
worms. 

Bookkeeping 

-17 + 12 =  c 

[IS2] Carrie … owed seventeen dollars to the bank. And, 
she got a certain amount of money, twelve dollars. She 
repaid the bank, but still the bank told her she owed five 
more dollars.  

Bookkeeping 

-5 + c = 21 

[IS3] Joe did some bad things in the past. And, he’s trying 
to even out the scales by doing good things. So far, he still 
has five bad things to repay for what he’s done. And, he can 
think of 26 good deeds. He does the 26 and by the end of 
week he’s evened out the scales and did more than he 
expected. He did 21 more good deeds.  

Counterbalance 

 

-14 + -7 = c 

[IS4] Eddie went to the bank and [borrowed] fourteen 
dollars. Later on in the week he [borrowed] seven more 
dollars... When the bill came into the mail, the bank said he 
owed twenty-one dollars to them. 

Bookkeeping 

-5 + c = -15 

[IS5] I broke five games. And then the next day I broke 
some more games, ten of them to be exact. It turns out the 
owner, that happened to be there, found out I broke fifteen 
games. That I owed him. 

Bookkeeping 

8 – 20 = c [IS6] Sonic the Hedgehog had 8 hairs. When he grew up, he 
found out that if he had more hairs he would have lost 

Bookkeeping 
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twenty more. And, if he, if that did happen, he would have 
lost twelve hairs.  

5 – c = 17 

[IS7] Jerry figured out that if he lost five dollars in this bet, 
that the five dollars that he had, which … he would be down 
to nothing. So, he went all in. He did lose that [hand], but he 
wanted to continue. So he took a loan for twelve dollars … 
He took a loan for twenty-one dollars. I mean, twenty- two 
dollars.  

Bookkeeping 

-2 – 3 = c 

[IS8] Lewis wasn’t really good at keeping his homework 
coming in. He owed two assignments already. And later on 
in the day, he realized he still had three more assignment 
due. And in total he owed five assignments. 

Bookkeeping 

c – -20 = 6 
[IS9] Jay noticed that … he had fourteen dollars. And he 
owed a friend twenty. He paid the friend back fourteen 
dollars and still owed six. 

Bookkeeping 

-10 – -22 = c 

[IS10] There was a man and he owed ten dollars to the mob. 
Um, he paid twenty-two dollars, which he knew was over. 
But, he thought he would have some extra points if he paid 
back more. The mob gave back his twelve dollars. And, he 
had an extra twelve dollars to use.  

Bookkeeping 

Figure 1. Isaac’s stories by number sentence with conceptual model use. 

At times when Isaac posed stories, he changed the structure of the number sentences (i.e., 

IS1, IS6, IS7, IS8, IS9, IS10). For example, Isaac changed -2 – 3 = c to -2 + -3 = c and posed 

a story about late homework assignments in which he started with two late assignments and 

gained three more late assignments and represented late homework with negative integers (see 

IS8). However, the number sentence -2 + -3 = c represents Isaac’s story better than -2 – 3 = c. 

Similarly, the number sentence 5 – c = 17 (see IS7) does not seem to fit his story in which a 

man loses five dollars and takes another loan. Yet, he still drew upon the Bookkeeping 

conceptual model because he used the integers as gains and losses. 	

Although he used the Bookkeeping conceptual model most frequently in his stories, he 

did not always use it appropriately (i.e., IS6, IS10). Of the 10 stories Isaac produced, a few of the 
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stories used positive and negative numbers in unrealistic ways. For example, for 8 – 20 = c, he 

discussed how Sonic the Hedgehog lost hairs that did not exist (see IS6). Because Sonic cannot 

lose hair he does not have, this story is not realistic. Even when Isaac used contexts like money, 

which is considered a more conventional context than hair loss for integer operations, the stories 

with money were not entirely realistic. For example, for the number sentence -10 – -22 = c, 

Isaac posed a story about borrowing 10 dollars from the mob and repaying more (IS10). 

Although it is possible to borrow a small amount of money from the mob, this would likely not 

happen. Isaac changed the number sentence structure (IS1, IS6, IS7, IS8, IS9, IS10) and posed 

unrealistic stories for two of them (IS6, IS10). Although Isaac only used the Counterbalance 

conceptual model once as he posed his stories, he was the only participant that drew only on 

Counterbalance and Bookkeeping. 

Joseph and the Bookkeeping, Counterbalance, Translation, and Relativity Conceptual 

Models  

Joseph mostly relied on Bookkeeping conceptual model use in six of the nine stories he 

posed, but he also made use of various other conceptual models—Counterbalance, Translation, 

and Relativity (see Figure 2). Of his uses of Bookkeeping within the stories, Joseph used 

contexts that focused on the increases or decrease of amounts, such as gaining stains and 

removing stains on pants (see Joseph story 7 [JS7]) or having hunger and satisfying hunger (see 

JS2). However, Joseph did pose one story about borrowing money (see JS5).   

 

Equation Story Conceptual 
Model 

18 + c = 5 
[JS1] So you’re playing football and you had 18 kids wearing 
white jerseys and… you’d have to have 13 kids wearing black 
jerseys. So the white team has 18 jerseys and the black team 

Counterbalance 
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has 13 jerseys. And the neutral team which would be the 
equals would, uh, only have 5 kids left. 

-17 + 12 =  c 

[JS2] There are 17 people in a house. And, uh, they’re hungry 
so they want cookies. So you only make 12 cookies. And that 
only feeds… 12 people, of course. And then there are 5 people 
left that are hungry. 

Bookkeeping 

-5 + c = 21 Equation Not Given NA 

-14 + -7 = c 

[JS3] Let’s say, you are going to your family’s house for 
Christmas and you’re travelling down the road… uh, the 
numbers would be the miles and you accidentally turned in the 
wrong direction. And so the further and further away would 
be the larger the negative number. So, first you take a right 
and go negative fourteen miles away. And then, you take 
another right and go negative seven miles away. So total you 
are negative twenty-one miles away.  

Translation  
 

-5 + c = -15 

[JS4] I guess you could do baseball … Say you are down 
[five] runs in the first inning And you end up losing by fifteen 
runs. So you would have to have ten runs in the other innings 
to be down by fifteen runs.  

Relativity 

8 – 20 = c 

[JS5] I’d say that I’m going to the mall. And, there is a 20 
dollar gift. And, uh, I ask my parents … I only have 8 dollars. 
So I’m 12 dollars out ... So, I’d have to ask for another twelve 
dollars from my parents to get the Christmas present.  

Bookkeeping  

5 – c = 17 
[JS6] If you have five presents under the tree ...  And, you 
would have to have twelve additional presents to get 
seventeen presents under the tree.  

Bookkeeping 

-2 – 3 = c 

[JS7] Say you got a new pair of pants and you got two stains 
on them. My mom wouldn’t be very happy. And, uh, you’re 
playing football. …So you would get another three stains on 
your pants which would be … a negative five, which would 
be a total of five stains on your pants. 

Bookkeeping 

c – -20 = 6 

[JS8] I got chickens at my house and I think of eggs, I guess. 
You need to find the amount and you have a total of six eggs 
that I brought up to the house. ... So the positive twenty would 
be the eggs that you gather. But, unfortunately, my dog got a 
little hyper as I was carrying the eggs up to the house and he 
made me spill negative fourteen. So, negative fourteen would 
be the eggs that cracked. And, positive six would be the eggs 
that actually made it to the house.   

Bookkeeping 
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-10 – -22 = c 

[JS9] Say I am going fishing. And the positive twenty-two 
would represent the first caught total. So I caught twenty-two 
fish, and then the negative ten would be the ten small fish that 
we weren’t going to eat. I put them back in the lake. And the 
box would equal the fish that we were going to eat, which 
would be twelve.  

Bookkeeping 

Figure 2. Joseph’s stories by number sentence with conceptual model use. 

 

In addition to Joseph writing stories with unconventional contexts alongside various 

conceptual models, he often changed the number sentences to accommodate his conceptual 

model (see stories JS5, JS6, JS7, JS8, and JS9). For example, for the equation 8 – 20 = c, in 

which he posed his only story about money, Joseph implicitly changed the number sentence to 

20 – 8 = c, rather then 8 – 20 (see JS5). He changed the structure of the number sentences in 

most of his stories, with the exception of three stories (JS2, JS3, JS4).   

Joseph was one of the few participants who employed a variety of different conceptual 

models. He used Counterbalance (see JS1), Translation (see JS3), and Relativity (see JS4) in 

addition to Bookkeeping. He also used a variety of contexts. He used a context of movement 

paired with Translation when he described moving in the “right” or “wrong” directions (see JS3). 

He also used different colored football jerseys to the integers (see JS1) and negative integers to a 

baseball game score, which are not typically used in baseball (see JS4).   

His stories were mostly realistic. Consider story JS7, in which negative integers represent 

stains on pants and positive integer represent cleaning stains. Although this may be considered 

an unconventional use of integers, it is reasonable to use integers this way. One of the Joseph’s 

stories was unrealistic (see JS1). He used positive integers to represent “kids wearing white 

jerseys” and negative integers to represent “kids wearing black jerseys.” Although this is a 

context that may have worked, he mentioned a “neutral team which would be the equals” that 



 

	
	

27 

added an element of unreasonableness to the story. Even though Joseph often changed the 

structure of the number sentence, Joseph was overall quite flexible with his use of integers in 

conceptual model uses by applying different ones to a range of realistic contexts.  

Summary of Different Conceptual Models behind the Stories Posed  

The students used these conceptual models differently. Students used multiple conceptual 

models. Yet, some students used only one or primarily one conceptual model. Table 3 highlights 

how many students used the different conceptual models at least once.  

Table 3 

Different Conceptual Model Use by the Students  

Conceptual Model Number of students in this study that used the 
conceptual model at least once  

Bookkeeping  6 of the 6 students  

Counterbalance  2 of the 6 students  
Relativity  1 of the 6 students  

Translation  2 of the 6 students  

 

As illustrated in Table 3, most students drew on the Bookkeeping conceptual model. Fewer 

students demonstrated use of Counterbalance, Relativity, and Translation. Although the students 

used these conceptual models differently, as illustrated in the student profiles, each of the 

students posed a variety of contexts, often changed the structure of the number sentence, and 

posed realistic or unrealistic stories in order to accommodate their conceptual model use.  

 

Discussion 

We asked students to pose stories for open number sentences involving positive and 

negative integers investigating how students thought about integers in relationship to contexts. In 
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particular, we presented a set of conceptual models for integer addition and subtraction as a way 

of describing thinking about and using integer addition and subtraction (Clement, 2000; Steffe & 

Thompson, 2000; Ulrich et al., 2014). We then provided two students’ profiles. As part of those 

profiles, we described the types of context, such as whether the students used recommended 

curricular contexts like credit or debit, temperature, elevation or electron charge or some other 

context. We also described how these students changed the structure of the number sentence and 

the realism of the stories to accommodate their conceptual model use. Although some of the 

students posed stories with unexpected or unrealistic contexts and changed the structure of the 

number sentences (Kilhamn, 2008; Mukhopadhyay, 1997; Rowell & Norwood, 1999), the 

students were able to make use of a variety of different conceptual models of integer addition 

and subtraction.  

Unconventional Contexts of Posed Stories  

Most of the stories involved unconventional contexts (e.g., lost homework, wanting 

baseball cards) or contexts not typically advocated by curricula (Whitacre et al., 2011) or 

standard documents (NGA & CCSSO, 2010) for integer addition and subtraction. Yet, students 

posed unconventional contexts in realistic ways that supported mathematical thinking about the 

integer addition and subtraction. The students in this study used a variety of productive and 

realistic contexts that were also unconventional, which may indicate that students are much more 

flexible in thinking about integers beyond the suggested contexts within instruction, curriculum, 

or standard documents. The students may produce these types of unconventional contexts to 

accommodate their conceptual model preference as opposed to using a more conventional 

context. Although it could be conjectured that unconventional stories are posed prior to formal 
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school instruction only; the results of this study revealed uses of unconventional contexts after 

formal school experiences. 

Contexts of Posed Stories as Insights into Thinking about Integers 

Although the students used a variety of contexts, behind their posed stories are broad 

mathematical ways of thinking about integers (Bell, 1984; Greca & Moreira, 2000). We analyzed 

the stories that the students posed, with particular emphasis on the ways that the students applied 

and used the contexts to the integer addition and subtraction number sentence, for insight into 

their mathematical thinking about integer addition and subtraction (Cai et al., 2015). The 

contexts the students used, although not always realistic or conventional, not only provided 

perspective into their thinking, but also illustrated that there were common ways that the students 

thought about and used the integers. Many contexts in the stories posed by students related to the 

idea of a loss of discrete quantities. Contexts like “lost pencils,” “want of baseball cards,” and 

“cracked eggs” are all related in that the students posed these stories with contexts that support 

the conceptualization of a loss of some sort of discrete quantity. This was the case for each of the 

conceptual models. Students used Translation, for example, as they described sharks jumping up 

and down, racecars moving forward and backwards, and trips home in right and wrong 

directions. Although these are different contexts, those contexts evoke mathematical conceptions 

of linear movement.   

 The descriptions of the conceptual models capture the essence of Bell’s (1984) 

isomorphic claim by recognizing that similar thinking is behind the contextual use of “lost 

books” and “needing pencils.” It’s possible that students may also compromise ideas of realism 

of the context or even change the structure of the number sentence to better accommodate their 

conceptual models as well.  
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Significance of the Conceptual Models for Integer Addition and Subtraction 

The conceptual models illustrate the types of thinking beyond operations that students 

may need. Other significant features of the conceptual models are described next: 

1. The conceptual models describe integer thinking in a different way from other models—

built from the stories that students posed.   

2. The descriptions of the conceptual models have explicitly defined roles for the integers—

the stories that students posed used integers in different ways.  

3. There is nuanced thinking about integers that students need and use, which is beyond 

operation with integer alone—the ways that students, for example, posed stories that 

drew on Bookkeeping and Counterbalance conceptuals differently in how quantities were 

used.  

Model building from problem posing. The development of the conceptual model 

descriptions stemmed from students’ problem posing, which is a distinction of the conceptual 

models for integer addition and subtraction from other frameworks of thinking about integers. 

The role of contexts in relationship to integer addition and subtraction is complicated (e.g., 

Stephan & Akuyz, 2012; Whitacre et al., 2012). We know that children do not always use 

integers when given particular contexts (Mukhopadyhyay et al., 1990; Peled & Carraher, 2008; 

Whitacre et al., 2015). This present study extends this scholarly discussion with the descriptions 

of conceptual models, second-order models of the thinking behind applying contexts to integer 

addition and subtraction. Furthermore, this study extends the scholarly discussion on thinking 

about integers and contexts with descriptions into how students applied contexts when they were 

given integer open number sentences. Because contexts are rooted externally in our world, and 
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the students created the contexts in this study as they posed stories (Cai et al., 2015), this 

framework of second-order models (Steffe & Thompson, 2000; Ulrich et al., 2014) provides 

insight into thinking about integer addition and subtraction that connects internal representations 

of their thinking (i.e., conceptual models) directly to external representations of the world (i.e., 

contexts).  

Although research with integers spans decades (e.g., Bell, 1984; Janvier, 1985), explicit 

scholarly discussion on thinking about integer addition and subtraction has gained momentum 

recently (e.g., Bishop et al., 2016; Bofferding, 2014; Stephan & Akuyz, 2012; Wessman-

Enzinger, 2018) with increased interest in research in student thinking about integers (Lamb et 

al., 2013), calls for different studies and perspectives on student thinking (Bofferding, Wessman-

Enzinger, Gallardo, Salinas, & Peled, 2014; Lamb et al., 2013), and engaging in scholarly 

discourse across these different perspectives (Bofferding & Wessman-Enzinger, 2015). The 

descriptions of conceptual models provides a distinct perspective by describing thinking about 

integer and addition and subtraction as students connect symbolic use of integers (open number 

sentences) to contexts (posed stories). 

Models with explicitly defined roles of integers. The explicit definitions of the integers 

(i.e., positives, negatives, zero) within each conceptual model represent a significant feature of 

this framework on thinking about integer addition and subtraction, providing “clarity” in the 

models (Thompson, 1982, p. 160). Although other frameworks exist that describe thinking about 

integers (Gallardo, 2002), integer ordering, value, and directed magnitude (Bofferding, 2014), 

and integer addition and subtraction (Bishop, Lamb, Philipp, Whitacre, & Schappelle, 2014; 

Bishop, Lamb, Philipp, Whitacre, Schappelle, & Lewis, 2014), the conceptual models described 

in this study present explicitly defines roles of positive integers, negative integers, and zero. By 
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examining the students’ posed stories, as they connected the integers to contexts, the set of 

descriptions generated captured the students’ thinking about integers through second-order 

models (Steffe & Thompson, 2000; Ulrich et al., 2014), with explicit attention to the role of 

positive integers, negative integers, and zero.  

Table 3 

The Role of Zero as Defined in the Conceptual Models 

Conceptual Model The Role of Positive and 
Negative Integers 

The Role of Zero  

Bookkeeping  

 

Positive and negative 
integers represent gains 
and losses of a quantity.  

Zero represents either no gain 
or loss in quantity. 

 
Counterbalance  
 

 
Positive and negative 
integers are not just 
opposites, but opposites 
that balance each other 
out to neutralize. 
 

 
Zero represents either no gain 
or loss in a discrete quantity, 
but zero also indicates 
neutralization. 
 

Relativity  
 

Positive and negative 
integers represent 
comparative positions to 
an unknown referent. 
 

Zero represents an arbitrarily or 
specifically selected point of 
comparison. 
 

Translation  Positive and negative 
represent linear shifts of 
any kind of object. 

Zero may represent a relative 
number with the positive and 
negative integers representing a 
translation in one direction or 
another from the relative zero, 
but zero also represents a zero 
vector, or no movement. 

 

As Table 3 illustrates the explicit roles of the integers—positive, negative, and zero—found in 

the conceptual models descriptions. The Bookkeeping and Relativity definitions highlight one 

role of zero and the Counterbalance and Translation definitions highlight two different roles of 
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zero. This may point to a relationship between the conceptual models; perhaps Bookkeeping and 

Counterbalance are related and Translation and Relativity are related because of the similar 

zeros. Translation and Relativity, for instance, both have zero defined as a relative zero, but 

Translation also has zero defined as a movement in no direction. Similarly, the descriptions of 

the conceptual models also explicitly captured the roles of opposites that the students used, with 

the definitions of the models including the role of positive and negative integers.  

Distinction of Bookkeeping from Counterbalance. The distinction of the Bookkeeping 

conceptual model from the Counterbalance conceptual model is an example of how this set of 

conceptual models extends the scholarly discussion on student thinking about integers. Although 

we know that children often think differently from adults (e.g., Bofferding, 2014), the prior 

literature describing students’ thinking about integers has not explicitly distinguished applying a 

gain or loss to a singular quantity (i.e., Bookkeeping) from the comparison of two quantities that 

neutralize (i.e., Counterbalance). Because this study was rooted in data from students, an element 

of building second-order models, and Thompson (1982) emphasized that models need to 

sufficiently capture what the students do, this distinction needed to be made. Instructional 

models typically focus on equilibrium and number lines models (e.g., Almeida & Bruno, 2014; 

Vig et al., 2014), but this does not adequately describe thinking of the students’ use of contexts 

as they posed stories.  

The descriptions of the conceptual models distinguish nuances between Bookkeeping and 

Counterbalances. The models are also built from the stories that students pose and provide 

defined roles of positive integers, negative integers, and zero. Although these are the distinct 

affordances of the conceptual models for integer addition and subtraction, future investigations 

into how these conceptual models are related to the different frameworks for student thinking 
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about integers are needed (e.g., Bishop, Lamb, Philipp, Whitacre, Schappelle, & Lewis, 2014; 

Bofferding, 2014; Gallardo, 2002). The conceptual models provided in this study, and the 

descriptions of how students used them, initiates that discussion.  

 

Implications for Mathematical Thinking and Learning   

The following section will highlight the implications of identifying and describing the 

conceptual models for integer addition and subtraction that the students drew upon and how they 

did this as they posed stories. The following implications discussed next are:  

1. There is a need for the re-examination of the usefulness of conventional contexts in 

school mathematics to best support the mathematical thinking and learning of students.  

2. Awareness of the conceptual models is important, as similar thinking behind the 

conceptual models is present in advanced mathematics. 

3. Problem posing for integer open number sentences is an insightful assessment tool for 

describing and understanding the thinking and learning of students. 

A need for re-examination of the usefulness of conventional context. Contexts are an 

instructional tool that many educators use with the teaching and learning about the negative 

integers (e.g., Liebeck, 1990; Stephan & Akuyz, 2012). Hidden behind the contexts are ways of 

mathematical thinking that are more comprehensive and uses that we need to be cognizant of 

(Bell, 1984; Cai et al., 2015). Although the contexts used in instructional settings may promote 

different ways of thinking about integers, or the conceptual models for integer addition and 

subtraction, the students in this study did not use contexts in conventional ways. 

None of the students used contexts of temperature or electron charges, which are typical 

contexts (Altiparmak & Özdoğan, 2010; Battista, 1983; Schwartz et al., 1993). This is a striking 
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observation, especially because these Grade 8 students were exposed to temperature and electron 

contexts in their instruction (indicated by their teacher), lived in the Midwestern region of the 

United States where the temperatures reach negative temperatures, and were considered 

mathematically advanced by their teacher. Temperature is a context that supports thinking about 

and using the integers with Relativity or Translation conceptual models because of the relative 

scales and linear movement typically used in both. Electron charge also may support thinking 

about electrons with Relativity because an atom can have a charge with infinitely many different 

combinations of protons and electrons (e.g., -2 + 3 = +1, -5 + 6 = +1). It is noteworthy to 

compare the neglected use of the temperature and electron charge contexts to the diminutive use 

of the Relativity or Translation conceptual models by the students in this study. Similarly, the 

context of electron charge may promote the thinking about the integers with the Counterbalance 

conceptual model. Electrons were not used as a context once, yet the students drew upon the 

Counterbalance conceptual model twice with unconventional, realistic contexts (i.e., good 

deeds/bad deeds, black and white jerseys on a football team), without having to change the 

number sentences. The use of conceptual models for integer addition and subtraction in tandem 

with unconventional contexts supports the re-examination of the usefulness of conventionally 

advocated contexts. If students do not draw upon these contexts, we need a re-examination of 

conventionally used contexts to determine the extent in which using these contexts remain useful 

or even necessary.  

The prevalence of the Bookkeeping model may be due to how the model naturally 

extends from whole number reasoning. With whole number addition and subtraction, there are 

not well-established conventional contexts like there are for integer operations. Any context that 

supports adding discrete objects together works for arithmetic with positive whole numbers (e.g., 
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apples, pebbles, pencils, cupcakes).  When students extend their thinking from positive whole 

numbers to using negative integers, they may modify their usual use of objects with “gains” or 

“losses.” When students transition to using negatives, they can begin thinking about “losing” 

pencils or “wanting” pencils in opposing to “gaining” pencils or “having” pencils. While this 

context (losing or wanting pencils) may have limitations and constraints with some number 

sentences (e.g., 2 – -7), the context can work well with addition number sentences (e.g., -7 + 2, “I 

wanted seven pencils, obtain 2 pencils, and now only want 5 pencils.”).  Future work could 

explore the potential of understanding how students’ use of unconventional contexts and 

conceptual models develop. Additionally, work could explore relationships between number 

sentences and context use and how contexts are instructionally useful.  

Affordances of the conceptual models: Use in advanced mathematics. Understanding 

mathematical thinking and uses of the integers as students apply them to contexts may help 

students in more advanced mathematical work. The following discussion will unpack some of 

the possible affordances of the conceptual models for integer addition and subtraction in 

advanced mathematics. 

Bookkeeping. The ideas afforded by the Bookkeeping conceptual model extend to 

mathematical uses beyond the traditional conventions of money, to thinking about numbers 

integers as gains and losses, which can be used to solve other problems beyond integer addition 

and subtraction. For example, consider computing means in statistics. If the mean of a data set is 

a certain amount that is given and an unknown element is added to that data set, then one might 

want to determine what that element needs to be for the mean to remain the same, for the mean 

to increase by a certain amount, or for the mean to decrease by a certain amount. This type of 

problem, and others, can be solved with a Bookkeeping, or a gains and losses, perspective. 



 

	
	

37 

Counterbalance. Negative numbers are used to conceptualize negative areas between the 

x-axis and a curve that lies below the x-axis in calculus. When integrating in calculus or 

computing Riemann sums in analysis, there is a counterbalancing of positive and negative areas 

between curves and the x-axis. If the curve is above the x-axis, the area is positive, and if the 

curve is below the x-axis, the area is negative. When the definite integral is 0, we know that the 

areas above the x-axis are equivalent to the areas below the x-axis. Although the result of an 

integral may be zero (see Figure 3), the areas are still present, making use of the Counterbalance 

conceptual model.  

 

Figure 3. Example of positive and negative areas counterbalancing.  

Relativity. Negative integers are found on the various axes as positions with relativity. 

Historically, before discussions about rules of operating with integers, the 19th century texts 

often discussed the nature of integers. For these authors, part of the nature of the integers was 

rooted in the relative nature of using the integers. For example, one of the few number line 

illustrations in these texts provided an arbitrary zero that highlighted the relative positions of the 

integers (see Figure 4). Rather than placing zero on the number line, the idea of relativity is 

emphasized with the referent as the point “O.” All of the integers are measurements from point, 
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“O.” Many of the authors of United States 19th-century arithmetic and algebra texts maintained 

that the use of integers is relative. 

 

 

 

 

 

 

 

Figure 4. A relative number line (Day & Thomson, 1843, p. 20).  

Although the contexts of temperature and elevation are embedded in our current 

mathematics curriculum (NGA & CCSSO, 2010; Whitacre et al., 2011), ideas like relativity are 

absent and underdeveloped in the modern curriculum in the United States. Yet, this idea of the 

Relativity conceptual model has implications in the learning of more advanced mathematical 

topics, such as applying a relative position of the origin and Cartesian coordinate plane onto 

existing curves. Axes can be shifted and new planes, such as polar coordinates, can be introduced 

in order to obtain simpler equations for curves. The idea of axes and coordinate planes can be 

relative, just as the assignment of negative and positive numbers can be relative. For example, 

compare the graphs of 𝐺(𝑥) = 𝑥& and 𝐹(𝑥) = (𝑥 − 2)& + 3 in Figure 5 (i.e., 𝐺(𝑥) is blue and 

𝐹(𝑥) is purple). Both the graphs of 𝐺(𝑥) and 𝐹(𝑥) have equivalent shapes.  𝐹(𝑥) is a Translation 

of 𝐺(𝑥) two units to the right and three units up. However, instead of thinking of translating the 

graphs, we think of creating a new coordinate system. Lines 𝑎 and 𝑐, which are the green lines in 
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Figure 5, could represent a new coordinate system and 𝐹(𝑥) = (𝑥 − 2)& + 3 could be redefined 

as 𝐹(𝑥.) = (𝑥.)& with this new coordinate system created with the new axes.    

 

Figure 5. The use of Relativity here is demonstrated by the functions F and G, which are in the 

same family of quadratics. With a new coordinate system, F could be redefined as G.  

How axes are used or even what coordinate system (e.g., Cartesian, polar) is selected are 

examples that support the use of the Relativity conceptual model in advanced mathematics.  

Translation. Integers are used as transformations in algebra, geometry, trigonometry, and 

calculus when translating points, shapes, and curves. Eventually students learn that these 

transformations can be expressed as vectors, which they may use in physics and in the sciences. 

The integers also serve as both scalars and vectors. As students deal with geometric and 

algebraic transformations, they have to coordinate the use of integers both as scalars and as 

vectors. As students progress in more advanced mathematics they will eventually need to learn 

how using a negative integer as a scalar is different than using integers as vectors. Early 
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experiences with utilizing the Translation conceptual model, or treating the integers as vectors, 

may help students as they progress mathematically.  

 

Future Research 

The major finding of this study is the descriptions of the conceptual models and the 

students’ use of them, which describe ways that students think mathematically about integer 

addition and subtraction when posing stories. Future investigations, where children are worked 

with intensively and extensively, could use this set of models. The integrity of these models 

could be investigated in symbolic settings (e.g., as children solve -2 + c = 7) since the models 

were developed from the stories that the students posed. Furthermore, future investigations could 

include how these models describe thinking over extended time or how models work with integer 

multiplication and division. Next steps in research could also be taken by employing this type of 

research to younger children and with a larger sample of children. This is preliminary work on 

generating and describing conceptual models for integer addition and subtraction. Future 

research should investigate the interconnectivity of these conceptual models, how the various 

conceptual models are related, and how learning may develop from these models (Thompson, 

1982). Clement (2000) pointed to the importance of generative work on models and using these 

descriptions as a basis for generating more detailed descriptions of the models, or even other 

models, is needed.  

 

Conclusion 

The conceptual models of integer addition and subtraction provide a useful framework 

for understanding student thinking about integers addition and subtraction and contexts. This is 
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important for the field for (a) understanding student thinking, (b) providing insight into the 

teaching and learning of the integers in the realm of contexts, and (c) offering a mathematical 

lens for using and thinking about contexts and negative numbers. The findings from this research 

are critical in extending the previous work on student thinking about integers because they 

describe thinking about and using the integers in relationship to contexts.   
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