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Integers as Directed Quantities

Nicole M. Wessman-Enzinger

Abstract  Mathematics education researchers have long pursued—and many still 
pursue—an ideal instructional model for operations on integers. In this chapter, I 
argue that such a pursuit may be futile. Additionally, I highlight that ideas of relativ-
ity have been overlooked; and, I contend that current uses of translation within cur-
rent integer instructional models do not align with learners’ inventions. Yet, 
conceptions of relativity and translation are essential for making sense of integers as 
directed quantities. I advocate for drawing on learners’ unique conceptions and 
actions about directed number in developing instructional models. Providing evi-
dence of student work from my research, I illustrate the powerful constructions of 
relativity and translation as students engage with directed quantities.

Keywords  Conceptual models · Integers · Integer addition and subtraction · 
Integer instructional models · Integer operations · Number line

13.1  �Introduction: Pursuit of the Ideal Instructional Model 
for Integers

The perfect model for teaching and learning operations on integers is the holy grail 
of integer research in mathematics education. After taking over 1500 years to for-
mally account for integers (e.g., Henley, 1999), mathematicians and educators have 
sought the perfect model for integer operations through various contexts, including 
the number line (e.g., Heeffer, 2011; Schubring, 2005; Wessman-Enzinger, 2018a). 
Yet, the use of the much-vaunted number line broke down for nineteenth century 
mathematicians for the operations of multiplication and division (Heeffer, 2011). 
Centuries later, even our social media is proliferated with math teacher chats, 
groups, and tweets posting and discussing their wonderings about instructional 
models for integers. For example, a recent post in a large Facebook group of 
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mathematics education teachers and researcher quickly welcomed 33 different com-
ments (not including replies) on the following question (Mathematics Education 
Researchers, 2017):

Does anybody know a good model of negative integer (number) operations? I am working 
with middle school teacher and students. It’s hard to find a visual model that illustrates the 
meaning of negative number division/multiplication such as 10/−2. Is there a good explana-
tion that makes sense of the operation with a good connection with the division topic?

This holy grail—the ideal model for teaching and learning of integer opera-
tions—will always remain mythical. We will never find the perfect instructional 
model for all integer operations, despite our commitment, because all models for 
integers break down at some point (Galbraith, 1974). Although all models have 
affordances and limitations (Vig, Murray, & Star, 2014), integer instructional mod-
els have particular limitations (Peled & Carraher, 2008) because of the constraints 
on the physical embodiment of negative numbers (Martínez, 2006).

For a few instructional models, some of these affordances and limitations are high-
lighted in Table 13.1. In an article about mythical creatures in The New Yorker, Schultz 
(2017) commented, “One of the strangest things about the human mind is that it can 
reason about unreasonable things” (para. 2). Despite the affordances and limitations 
of instructional models for integers, we can still reason about them. Perhaps this is 
why an ideal instructional model for integers has been pursued so vigorously.

Table 13.1 highlights only a diminutive portion of the different instructional mod-
els that have been proposed across decades of integer research (e.g., Bruno & 
Martinon, 1996; Janvier, 1985; Liebeck, 1990; Linchevski & Williams, 1999; 
Schwarz, Kohn, & Resnick, 1993; Thompson & Dreyfus, 1988). There will always be 
a hunt for the ideal integers instructional model. This pursuit of the unattainable is not 
so uncommon: “The relative plausibility of impossible beings tells you a lot how the 
mind works” (Schultz, 2017). It seems that an ideal instructional model for integer 
operations might exist, for we know that robust models exist for whole number opera-
tions. Furthermore, studies with instructional models for integers make the existence 
of such a model seem plausible because these investigations provide interesting results 
and insights into students’ thinking (e.g., Bofferding, 2014; Tsang, Blair, Bofferding, 
& Schwartz, 2015). Consequently, math educators and psychologists will continue to 
pursue better instructional models for integer operations (e.g., Moreno & Mayer, 
1999; Pettis & Glancy, 2015; Stephan and Akyuz, 2012; Tsang et al., 2015).

Yet, we can do better than pursuing an ideal integer instructional model. In this 
chapter, rather than presenting more top-down integer instructional models, I instead 
point to how conceptualizing integers as directed quantities is a powerful concep-
tual tool. We should focus on the constructions of learners and the integer models 
they create prior to their use of integer instructional models made by adults. It is 
notable that many of our instructional models (those formed by adults) incorporate 
ideas of movement and measurement metaphors (Chiu, 2001; Lakoff & Núñez, 
2000), which align to larger mathematical ideas. This is likely because our students 
naturally employ ideas of movement and measurement; yet, we need to understand 
what learners’ integer constructions around movement and measurement for inte-



Table 13.1  Affordances and limitations of some instructional models for integer operations

Instructional 
model(s)

Sample 
reference(s) Affordances Limitations

Two-colored 
chips

Liebeck 
(1990), Murray 
(2018), Vig 
et al. (2014)

The use of two-colored chips builds on 
children’s experiences with discrete, physical 
objects.
These types of models work well with integer 
addition (e.g., -2 + 3 = □).
These types of models also work well for 
integer multiplication and division, where one 
factor is a negative integer and one factor is a 
positive integers (e.g., -2 × 3 = □, 6 ÷ -2 = □).

These types of models are not intuitive for integer subtraction because 
“zero pairs” must unnaturally be added into set of two-colored chips 
(e.g., -2 − 3 = □).
These types of models do not work for the multiplication of negative 
integers or the division of two negative integers, unless extra chips are 
available to imagine taking away chips.
The use of two-colored chips may be used differently and does not 
inherently dictate a particular instructional model.

Traditional 
debt and credit 
contexts

Wessman-
Enzinger and 
Mooney 
(2014), 
Whitacre et al. 
(2015)

Debts and credits exist in the world, and 
students might connect the integers to related 
contexts.
Learners may think about debts and credits in 
relation to integer addition and subtraction in 
ways that do not involve traditional notions of 
money (e.g., owing candy bars, lost pencils).

Although we apply negative integers to debts, we do not have to. Even 
secondary students do not necessarily connect traditional debt and credit 
contexts naturally to the negative integers.

 “Net worth” 
context paired 
with empty 
number line

Stephan and 
Akyuz (2012)

The “net worth” is used in ways that emulate 
counterbalancing of quantities, which is natural 
for learners.
“Net worth” modifies traditionally used ideas of 
debts and credits, which are prevalent in 
standards and curricula. “Net worth” is an 
intuitive space for learners to make sense of 
integer addition and subtraction.

The particular instructional model that Stephan and Akyuz (2012) use is 
a blended model, paring “net worth” with empty number lines. “Net 
worth” by itself does not naturally dictate use of an empty number line 
(as no linear movement is inherently a part of it). When “net worth” is 
paired with the use of the empty number line, learners use the change/
displacements only on the number line, which is slightly different than 
“net worth” where all of the quantities remain present.
This instructional model works well for addition, subtraction, and 
multiplication. It does not work as well for division (Stephan, personal 
communication, April 10, 2018).

(continued)



Instructional 
model(s)

Sample 
reference(s) Affordances Limitations

Movements on 
a number line

Nurnberger-
Haag (2007)

This model incorporates use of the number line 
and critiques of other number lines that are 
built on sets of rules and procedures.
This instructional model is designed for all four 
integer operations.
This model support physical embodiments of 
integer operations and students will physically 
move as they make sense of integer addition 
and subtraction.

Ultimately, this instructional model (despite critiques of other models) 
also builds on its own set of rules and procedures that are not 
necessarily intuitive or invented by learners.
“Adding and Subtracting Integers: (Remember to add or subtract only 
two numbers at a time.)

 �1. Start on a number line at the first number of the problem
 �2. Always start with a positive attitude! (Face the positive direction.)
 �3. Turn the ______ direction for every ‘−’ sign after the first number.
Whatever direction you end up facing is the direction you will walk
 �4. Walk the number of steps indicated by the absolute value of the
second number.” (p. 119)

Like the two-colored chip model above, there are different 
interpretations of “walking” on a number line.

Folding 
number line

Tsang, Blair, 
Bofferding, 
and Schwartz 
(2015)

This model capitalizes on evidence in cognitive 
research that humans are drawn to symmetry 
and supports work in embodied cognition that 
we think about things we physically experience.
This model supports the conceptual 
development of symmetry and works quite well 
with the addition of integers.

Extending this instructional model beyond integer addition is 
complicated, if not impossible.

Table 13.1  (continued)



gers look like. Conceptualizing integers as directed quantities, with movement and 
measurement, requires mathematical ideas of translation and relativity.

13.2  �Definitions of Relativity and Translation

The conceptualization of integers as directed quantities requires using integers as a 
relative number (Gallardo, 2002; Thompson & Dreyfus, 1988). The starting point 
and directions that are attributed as positive and negative numbers are arbitrary, 
even if intentionally determined making integers inherently relative. Relativity 
entails using the integers as comparative numbers or relative numbers (Wessman-
Enzinger, 2015). The integers describe relative positions. Zero represents the point 
of reference, which may be intentionally or arbitrarily selected. Distinctively, the 
zero does not represent a quantity of nothing, but is treated as a referent for com-
parison, as one reasons about integers with relativity.

The conceptualization of integers as directed quantities includes both movement 
and measurement as operations with integers are performed (e.g., Bofferding, 2014; 
Chiu, 2001; Lakoff & Núñez, 2000; Thompson & Dreyfus, 1988). These ideas of 
linear movement point to conceptualizations of translations. Translation entails 
using integers as vectors (Wessman-Enzinger, 2015). Integers are often treated as 
vectors moving right or left or up and down a linear model, coordinate plane, or 
three-dimensional space. Zero may be conceptualized as a vector or a translation of 
no movement. Similar to conceptualizations of relativity, the zero can also represent 
any arbitrary point with the addition and subtraction of positive and negative num-
bers representing the translation in one direction or another from the relative 
zero (Thompson & Dreyfus, 1988).

When conceptualizing integers with translation, distance may be used without 
direction specified, called absolute value (Wessman-Enzinger & Bofferding, 2018); 
for example, the distance between -2 and -3 is 1 (going from -2 to -3, or -3 to -2). 
Although it is possible to conceptualize distance without direction, it is still consid-
ered to be drawing upon translation because all distance must be conceptualized with 
direction at some point. When the direction of the distance is explicit, allowing for 
negative distances, this is called directed value (Wessman-Enzinger & Bofferding, 
2018); e.g., the distance from -2 to -3 is -1 and from -3 to -2 is 1. Moving in “more” 
and “least” negative (or positive) directions support use of directed value (Bofferding, 
2014; Bofferding & Farmer, 2018). Translation may also be employed with the use 
of counting strategies because counting fundamentally draws on movement and 
order (Bofferding & Wessman-Enzinger, 2018; Wessman-Enzinger, 2015).

These definitions of translation and relativity describe two broad types of con-
ceptualizations that learners construct as they engage with integer operations. 
Learners’ constructions of relativity and translation are powerful conceptual tools 
for making sense of integers as directed number. We should focus more on the con-
ceptual tools learners construct within instruction rather than top-down integer 
instructional models.



13.3  �Directed Numbers as a Powerful Conceptual Tool

You have the negatives like a thought thing. It’s kind of mental. And, you can like literally 
take away so many apples or slices of pie from someone and you can still have it. And the 
other person would still end up having some. Whereas, negatives, if you have something and 
you take something away from them and they don’t have any, you can still keep taking more. 
But, you don’t really have anything. You still won’t. (Drake, Grade 8)

In this excerpt, we see Drake, a student with 3 years of experience operating with 
negative integers, struggling with the abstract nature of the physical embodiment of 
these numbers. Negative integers, as Drake points out, cannot be physically mod-
eled with discrete objects in our world and are abstracted mathematical objects. 
Although all numbers are abstract, learning about the negative integers demands a 
different realm of abstraction (Fischbein, 1987).

Learners use manipulatives or hands-on activities as they learn whole numbers 
and fractions (e.g., Martin & Schwartz, 2005; Moyer, 2001; Siegler & Ramani, 
2009). For these reasons, mathematics educators might think that one affordance of 
using physical objects with the teaching and learning of integers is that learners 
draw upon something familiar (e.g., Bolyard & Moyer-Packenham, 2006). 
Embodied cognitive scientists and psychologists also recognize that our experi-
ences and actions impact our thoughts (e.g., Barsalou, 2008; Goldin-Meadow, 
Cook, & Mitchell, 2009; Lakoff & Núñez, 2000; Tsang et al., 2015). Yet, there are 
obstacles when extending previous experiences with whole number and physical 
objects to negative integers; negative integers are not naturally extended in the phys-
ical realm and have limitations in physical embodiment (e.g., Peled & Carraher, 
2008; Martínez, 2006). Negative integers, for instance, have to be mapped to the 
physical objects representing them. For example, the use of two-colored chips, or a 
cancellation model, is one way that integers are represented with physical objects, 
where the negative integers are represented by red chips and positive integers by 
black chips (e.g., Liebeck, 1990). A negative integer, -n, is modeled with n objects 
that need to be physically present and countable. Then, -n is represented, by exten-
sion, with each countable object representing -1. A consequence of this type of 
modeling with physical objects is that some problems, such as 2 − -1, may not be
intuitive and modeling them with physical objects can be challenging (Bofferding & 
Wessman-Enzinger, 2017; Vig et al., 2014).

Consequently, inaugural learning experiences with integers need to overcome 
traditional notions of the physical embodiment of number. Specifically, these learn-
ing experiences need to support the transition from discrete and static ways of think-
ing about number to thinking about number as continuous directed quantities. One 
way to so is to provide learners with opportunities to create their own models, rather 

Fig. 13.1  Alice’s drawing 
of discrete objects that 
supports transitioning from 
discrete to continuous 
objects



than giving them instructional models. Learners may create models that bridge dis-
crete and continuous representations of integers (see, e.g., Fig. 13.1).

Figure 13.1 illustrates work from a Grade 5 student, Alice, who drew two sets of 
discrete objects, 4 tallies to the left, and 2 tallies to the right when solving 4 − □ = 6.

Alice: [Draws four tally marks. Thinks for a bit and draws two more tally marks 
lower and to the right. Then writes -2 in the box.] I did four minus negative 
two and I got six because … I did four right here (points to upper tallies) and 
two (points to lower tallies). And, then this is six.

Teacher-researcher: How did you know it was -2?
Alice: Well, because I did two… I did it backwards (moves pen across 4 − -2 = 6).

If I did two plus four I got six. So, then I thought it would be negative two.
Teacher-researcher: What do you mean by backwards?
Alice: If like six (points at 6) minus two would give you four [6 − 2 = 4]. So, I

thought four minus negative two would give you six [4 − -2 = 6].

Alice used additive inverses, changing 4 − □ = 6 to 6 + □ = 4. She used 6 − 2
(instead of stating 6 + -2) when she solved this. Building on her discrete representa-
tions, she made analogies to whole number addition and subtraction (e.g., “working 
backwards,” comparing to 6 − 2). Her representation of discrete objects, paired with
addition and subtraction, points to potential for developing notions of directed number. 
Instructional experiences could connect Alice’s invented reasoning to her drawing. A 
teacher could ask, “In what ways is Alice’s drawing related to her strategy?” Then, her 
drawing could leverage ideas of movement; that 4 − □ = 6 and 6 + □ = 4 can represent
equivalent situations. Or, her representation could be built upon and turned into a con-
tinuous model (e.g., her tallies can be related to spaces on a number line).

As learners transition from thinking about whole number operations to integer 
operations, a wealth of significant conceptual changes need to occur (Bofferding, 
2014). As Drake’s excerpt above illustrates, learners need to transition from physi-
cally operating with number to “thought things.” Some of the potential challenges of 
transitioning from thinking about whole numbers to integers are highlighted below:

• Whole numbers can be physically embodied naturally with counting objects
(e.g., Smith, Sera, & Gattuso, 1988); integers have limitations with physical
embodiment, especially with counting physical objects (Martínez, 2006; Lakoff
& Núñez, 2000).

• Whole number units are positive (Steffe, 1983); integer units are positive units or
negative units.

• Whole number direction is one-directional; integer direction is two-directional
(Bofferding, 2014).

• Whole numbers have similar order and magnitude, 2 < 5 and |2| < |5|; integers
have different order and magnitude, −2 > −5 and |−2| < |−5| (Bofferding, 2010,
2014; Wessman-Enzinger, 2018a, c).

• Integers are relative numbers (Gallardo, 2002) in ways that only positive num-
bers are not.

Engaging with directed number as an inventive, playful “thought thing,” outside
of pre-determined instructional models, may help learners make these transitions 



(Bofferding, Aqazade, & Farmer, 2018; Wessman-Enzinger, 2018b, c). Directed 
quantities—an inherent part of making sense of integer operations (Poirier & 
Bednarz, 1991; Ulrich, 2013; Thompson & Dreyfus, 1988)—is a rich place to enter 
discussion about what thinking about integer operations entails: relativity and trans-
lation. Although thinking and learning about integers as directed quantities may 
have challenges, I argue that conceptualizing integers as directed quantity offers 
more than any singular instructional model. The following sections delineate some 
of the ways children construct directed quantities through the lens of the mathemati-
cal ideas of relativity and translation. Learners make sense of directed number in 
powerful ways (e.g., Bofferding, 2014; Bishop, Lamb, Philipp, Whitacre, Schappelle, 
& Lewis, 2014; Bishop, Lamb, Philipp, Whitacre, & Schappelle, 2016), negating 
the need to find the mythical, perfect instructional model for integer addition and 
subtraction. Examples of student work later in this chapter highlight that if we build 
on learners’ created models, rather than giving top-down models, there is no longer 
a need for a singular, ideal integer instructional model. The tenants of directed num-
ber, like translation and relativity, are often overlooked in descriptions of children’s 
thinking; examining these specific ways of thinking can provide insight into the 
most robust types of models. Yet, if we build on learners’ constructions of number 
as the “instructional model” instead, then we need to describe their constructions of 
translation and relativity in more depth.

In the following sections, I describe translation and relativity as components of 
understanding ways learners construct directed quantities. Specifically, I address the 
following points:

	1. There are rich historical backgrounds that support the conceptualizations of
translation and relativity of integers; as a society we grappled with ideas of trans-
lation and relativity for centuries.

	2. Existing research highlights the capabilities and thinking of learners as they
engage with integer addition and subtraction; yet, how learners construct ideas of
relativity is underrepresented.

	3. Many different contextual situations and problem types support different ways of
thinking about translation and relativity of integers; one instructional model
alone cannot fulfill these needs.

	4. Children create powerful ways of thinking with translation and relativity that are
significantly different than traditional integer instructional models. Children’s
unique constructions will point us in better directions for thinking and learning
in instructional spaces.

13.4  �Coordinating Relativity and Integers as Directed 
Quantities

The idea of relativity is a mathematical concept that extends itself beyond integer 
operations (e.g., choosing to use a Cartesian coordinate plane or polar coordinate 
plane is an example of relativity). In this section, I discuss the idea of coordinating 



relativity with integer addition and subtraction as a conceptual tool to make sense of 
integers as directed number.

13.4.1  �A Historical Perspective of Relativity

Nineteenth century North American arithmetic and algebra texts first present inte-
gers as relative numbers (Wessman-Enzinger, 2018a). Some of the first illustrations 
of the number line in North American school mathematics arithmetic and algebra 
texts included a relative number line. It is worth noting that the relative number line 
in Fig. 13.2 does not highlight zero, but rather a point “O,” where numbers to the 
right are positive numbers and numbers to the left are negative numbers.

The mathematical concept of relativity, which is foundational for using integers 
as directed number, evolved over time (Wessman-Enzinger, 2018a). Our modern 
definition of integers, with integers as a subset of the real numbers and rational 
numbers, prioritizes the integers as objects and overlooks relativity. Current curri-
cula and standards do not support extensive time to build the integers conceptually 
(e.g., integers are often not in the elementary curricula). Our modern curricula and 
standards, in fact, omit ideas of relativity with integers. Yet, without relativity tradi-
tional instructional cancellation models do not work well with subtraction. Consider, 
for example, illustrating 2 − -3 with a two-colored chip model. One needs to use
relativity to represent 2 in multiple ways in order to remove -3 chips.

Our modern curricula and standards even treat the integers as though they are 
fixed objects on a number line (e.g., negatives must always go on the left side of the 
number line). These types of ideas, such as negative integers being placed anywhere 

Fig. 13.2  Illustration of a relative number line in Durrell and Robbins (1897, p. 20)



on the number line (e.g., negatives on the right side instead of the left side), are 
absent from curricula and standards. Our standard documents (e.g., National Council 
of Teachers of Mathematics, 2000; National Governors Association Center for Best 
Practices [NGA] & Council of Chief State School Officers [CCSSO], 2010) do not 
highlight the relativity of integers. The implication is that learners must implicitly 
think about and use relativity; yet, relativity is essential for constructing directed 
number. Learners need time to conceptualize and build their meanings of relativity, 
which they might do naturally if allowed to construct models for themselves.

Despite the lack of emphasis on developing relativity in modern standards and 
curricula, researchers have reflected on it. Gallardo (2002) points to different under-
standings of integers, making explicit that one of those includes recognizing inte-
gers as relative numbers. Carraher, Schliemann, and Brizuela (2001) reflected on an 
N-number line, where the ordering is centered on N (e.g., N − 3, N − 2, N − 1, N,
N + 1, N + 2, N + 3). A distinguishing element of this N-number line is that N is 
unknown and could be represented by any number, thus incorporating the idea of 
relativity. The N-number line presented by Carraher et al. captures the essence of 
“relative numbers” and “relative number lines” found in early arithmetic and alge-
bra texts in the nineteenth century (see, e.g., Durell and Robbins, 1897; Loomis, 
1857). For example, Loomis (1857) began his introduction of the negative integers 
by describing the order of the negative integers through the context of the thermom-
eter. After discussing the thermometer and ordering, Loomis commented on relativ-
ity in reference to contexts beyond temperature:

It has already been remarked, in Art. 5, that algebra differs from arithmetic in the use of 
negative quantities, and it is important that the beginner should obtain clear ideas of their 
nature. In many cases, the terms positive and negative are merely relative. They indicated 
some sort of opposition between two classes of quantities, such that if one class should be 
added, the other ought to be subtracted. Thus, if a ship sails alternately northward and 
southward, and the motion in one direction is called positive, and the motion in the opposite 
direction should be considered negative. (pp. 18–19)

In this description, the integers are described as a relative number, where two 
directions are provided in “opposition” from an arbitrary referent.

13.4.2  �A Contextual Perspective of Relativity

Say you are down five runs in the first inning of a baseball game. And you end up losing by 
fifteen runs. You would have to have ten runs in the other innings to be down by fifteen runs. 
(Joseph, Grade 8, -5 + □ = -15)

Joseph, posing a story for -5 + □ = -15, makes use of integers as relative num-
bers with an unknown referent. When Joseph posed this story for the first time, I 
remember initially thinking this was quite a novel context—and then, I reflected on 
the mathematics he employed. What is the score of the game? Although the score of 
the game is unknown, the zero in Joseph’s context represents a “tied game.” Joseph 
drew on the relativity of the negative integers, illustrating runs below the tied score 
(i.e., the unknown referent).



Many contexts implicitly use integers as relative number: up and down runs in a 
baseball game without a known score (Wessman-Enzinger & Mooney, 2014); 
increases and decreases in money in a piggy bank with an unknown amount of 
money (Ulrich, 2012); getting on and off a train with an unknown number of riders 
(Bishop, Lamb, Philipp, Schappelle, & Whitacre, 2010). As learners coordinate 
their understanding of relativity with the integers in contexts, they must first deter-
mine a relative position, which points out the need for learners coordinate what a 
relative zero is.

Herbst (1997) reflected on how translation is related to relativity. He wrote, “The 
statement of an addition of the number line involves the juxtaposition of two arrows, 
a relative position” (p. 38). Herbst’s reference to this relative position is similar to 
referencing a relative zero, or a starting location that uses 0. Similarly, Marthe (1982) 
used a river problem for investigating the thinking and learning of integer addition 
and subtraction. In this problem, the positive integers represented moving upstream 
and the negative integers represented moving downstream. This upstream and down-
stream movement is relative to the initial starting point on the river. Wherever one 
starts at on the river, represents the zero. Exactly where one starts at this river is 
unknown; yet, everything is measured from this point. This is a relative zero. Because 
part of conceptualizing relativity requires using zero as an unknown reference (with 
an infinite number of possibilities), this may be challenging for learners.

Ulrich (2012) referred to this use of zero as an unspecified reference point. 
Similar to Joseph’s story where we do not know the score of the tied game, Ulrich 
defined an unspecified reference point as being able to conceptualize changes with-
out an actual quantity known. Ulrich highlighted that this ability to think about rela-
tivity and use an “unknown” reference point, like Joseph did in his story, impacts 
students later in mathematics. For example, unknown reference points are important 
when working with vectors and matrices in linear algebra. Although we use concep-
tions of relativity beyond making sense of directed number, we lack explicit explo-
rations of how these types of conceptions develop early on with directed number. 
The next section provides an example how a Grade 5 student constructed use of 
relativity with directed number.

13.4.3  �Illustration of Relativity and Directed Quantities: 
The Case of Jace

Figure 13.3 illustrates the work of a Grade 5 student, Jace, for the same number 
sentence type (i.e., -a + □ = b, where |a| < |b|; Murray, 1985) at two different points
in a 12-week teaching experiment (Steffe & Thompson, 2000) focused on integer 
addition and subtraction. Jace produced the drawing for -4 + □ = 10 during his first
individual open number sentence session with me and produced the drawing for 
-6 + □ = 15 during his second individual open number sentence session. In the first
session, Jace created an empty number line with -4 on the left and 10 on the right. 
He then used three sets of distances, with varying direction: -4 to 0 (a distance of 4, 



left to right), 0 to 4 (a distance of 4, left to right), and 10 to 4 (a distance 6, right to 
left). After summing his three distances, he concluded that the solution to -4 + □ = 10
is 14. In contrast, when solving -6 + □ = 15 2 weeks later, Jace placed -6 on the
right side and 15 on the left of the empty number line. This differed from the first 
session in that the negative numbers are represented on the right side of the number 
line, rather than the left side. Also, he found two distances, instead of three: first 
examining 15 to 0 (a distance of 15, left to right) and then going from -6 to 0 (a 
distance of 6, right to left).

First, Jace’s drawings of empty number lines highlight that the use of integers as 
a directed number ultimately requires using integers as relative number. Whether 
the integers are on the left or the right side of the number line, both of these repre-
sentations are correct. Although our culture, curricula, representations of mental 
models, models in mathematics education, and research place negative numbers on 
the left side of a horizontal number line or on the bottom of a vertical number line, 
children do not necessarily attend to these conventions.

Second, Jace started to develop conceptions of zero as a referent. In the first 
drawing, he produced a number line with zero as a number on the number line. By 
the second drawing, we see that he, in fact, omitted an explicit 0. Yet, in both cases, 
he drew on 0 as a flexible referent to find the distances.

Third, Jace’s strategy of finding the distance implicitly used directed number 
relatively for determining the absolute value or distance. Jace physically illustrated 
directed number from one relative number to another with motions and drawings, 
using these motions flexibly (sometimes right to left, other times left to right). When 
solving -6 + □ = 15, for example, Jace first moved his marker from left to right (i.e.,
15 to 0) and then right to left (i.e., -6 to 0). Jace accounts for incremented distances 
verbally and flexibly, writes only these distances above his number line, and uses 
these distances to determine the solution of the directed distance (i.e., he sums of the 
two absolute values required to translate -6 to 15).

13.4.4  �Connecting Themes of Relativity Across Mathematics 
Education and Developmental Psychology

Although the use of integers as relative numbers seems underemphasized in both 
mathematics education (i.e., not mentioned in curricula or standards documents) 
and developmental psychology (i.e., relativity has not been directly investigated), 

Fig. 13.3  Two number 
line drawings produced by 
Jace, a Grade 5 student, 
illustrating use of relativity 
with directed number



relativity is addressed both explicitly and implicitly in mathematics education and 
developmental psychology research. As illustrated above, the relativity of integers 
is an integral part of mathematics and thinking about directed number. What entails 
the starting point of the physical movement (i.e., our unknown referent)? Are the 
positive integers on the right or left side of a horizontal number line? Is the move-
ment associated with adding or subtracting one-dimensional, or is that relative as 
well? These notions of relativity have implications for embodied cognition (e.g., 
Lakoff & Núñez, 2000), mental models (Bofferding, 2014), and integer instruc-
tional models (e.g., Saxe, Diakow, & Gearhart, 2013). Not only are integers relative 
numbers (Gallardo, 2002; Schwarz et al., 1993), conceptualizing relativity is implic-
itly imbedded in our work. Now, we need to learn more about how learners con-
struct conceptualizations about relativity as it pertains to directed number.

13.5  �Coordinating Translation and Integers as Directed 
Quantities

In contrast to the relativity of integers, coordinating translation and the integers as 
directed quantities represents a prominent theme in both mathematics education and 
developmental psychology from describing thinking to describing integer instruc-
tional models. In terms of integer instructional models, Herbst (1997) discussed the 
use of the number line metaphor as a way to make sense of integer addition and 
subtraction. Lakoff and Núñez’s (2000) identification of order as a foundational 
component of mathematical cognition supports and informs the use of integers with 
translation. Whether talking about integer instructional models or ways of thinking 
about directed number, negative numbers may be constructed as point locations 
within this motion metaphor. Using a motion metaphor draws on the idea of sym-
metry on the number line (Herbst, 1997; Lakoff & Núñez, 2000). Ubiquitous peda-
gogical approaches support thinking about the addition or subtraction of integers as 
translations (e.g., Nurnberger-Haag, 2007; Tillema, 2012).

Although number lines (e.g., Saxe et al., 2013) and movement on linear scales 
(e.g., Nurnberger-Haag, 2007) are prevalent pedagogical tools, children do not nec-
essarily construct movement or use number lines like top-down integer instructional 
models dictate (Wessman-Enzinger, 2018b). Rather, children create unique uses of 
movement and number line. These learner-generated constructions provide a con-
ceptual tool for making sense of integers as directed number.

13.5.1  �A Historical Perspective of Translation

The concept of a number line is foundational, not only for informing thinking and 
learning about translation, but also for informing current research in mathematics 
education on student thinking about number, and specifically negative integers (e.g., 



Bofferding, 2014; Saxe et al., 2013). Although historical developments of a concept, 
such as number line, may not parallel educational and psychological developments, 
a deep understanding of the past can offer researchers and educators perspectives on 
the present and help them make decisions for the future. As Sfard (2008) pointed 
out, “one becomes … bewildered when one notices the strange similarity between 
children’s misconceptions and the early historical versions of the concepts” (p. 17).

Historically, we know that although some mathematicians had conceived of the 
number line in the seventeenth and eighteenth centuries (e.g., Wallis, 1685), most 
mathematicians and educators did not refer to number lines when attempting to make 
sense of operations with negative integers (Heeffer, 2011). Rather, mathematicians 
during the seventeenth and eighteenth centuries often made sense of negative inte-
gers by using contexts, such as debts of money, or incorporated geometrical 
approaches within explanations of rules of operations with negative integers 
(Wessman-Enzinger, 2018a). Heeffer (2011) presented historical evidence that math-
ematicians struggled in the past using number lines with operations, such as division, 
in their efforts to make sense of negative numbers and their operations. Indeed, the 
number line as a pedagogical tool evolved over several centuries to be incorporated 
into school mathematics (Wessman-Enzinger, 2018a)—with illustrations of the 
number line itself delayed for centuries after verbal descriptions of it. And, texts that 
included references to number line often paired it with contextual situations.

The historical struggle of mathematicians connecting operations with integers to 
the number line points to conceptual struggles of using the integers and number 
line; however, these are not necessarily places where the number line actually breaks 
down as contemporary learners engage with integers. Reflecting on potential break-
ing points for integers and number line, Liebeck (1990) stated, “The number line, 
then, emphasizes ordinality at the expense of cardinality” (p. 237). Liebeck hinted 
at the idea that the number line is not an infallible tool and certain integer instruc-
tional models, like number lines, offer different affordances. The number line is an 
important pedagogical tool, but specific tools may support some ways of reasoning 
more than others. Liebeck points to a conceptual leap that a child may have to 
undertake to begin to use the number line with integer operations—ordinality over 
cardinality.

In terms of using a number line, integer operations are often paired contrived 
rules. For example, Nicodemus (1993) described a “Linesman” where a human is 
standing on a number line facing right, negative number represents facing the oppo-
site direction or walking backwards, and addition and subtraction represent moving 
forwards or backwards. Herbst (1997) also found these types of rules in a textbook 
analysis. For example, when considering the number sentence 2 − -3, it is suggested
that one conceptualizes starting at 2 on the number line, turning around, and walk-
ing backwards three spaces on the number line, ending at 5.

These types of rules may not be intuitive to children, yet metaphors of movement 
are (e.g., Lakoff & Núñez, 2000). However, even these intuitions of movement do 
not guarantee that children will construct our cultural convention of a number line 
and translations on that number line. How will children use number line and integer 
operations, without us imposing our conventions and models on them?



We know that a major challenge that children may have, for example, with the 
number line is that the distance unit between the tick marks is to be used, not the tick 
marks themselves (Carr & Katterns, 1984; Ulrich, 2012). When learners count the 
tick marks, rather than the distances between the tick marks, they will end up with 
one more (or one less) than anticipated (Barrett et al., 2012). A major assumption 
with the number line as an integer instructional model is that learners will be able to 
extend their previous knowledge about whole numbers and the number line to oper-
ations with the integers and the number line. Ernest (1985) stated that the “number 
line model does not have any compelling inner logic. Instead it assumes familiarity 
with underlying representational conventions, which are to some extent arbitrary” 
(p. 418). Major assumptions of using the number line as an integer instructional 
model are that it is used in similar ways and that it supports learners’ ways of think-
ing. Yet, we know that the same integer instructional model is not used in the same 
way by teachers (e.g., Murray, 2018). We also know that children create unique and 
sophisticated ways of working with integers (e.g., Bofferding, 2014; Bishop et al. 
2016) that often surprise us.

Although the number line can certainly be tool for extending whole number rea-
soning with integers, we have to re-evaluate ways that it is developed and used. It 
took centuries for mathematicians to develop and use the number line; our students 
need time to develop use of the number line, particularly with integers. Learners 
may extend their use of a number line with whole number by using a number path 
(Bofferding & Farmer, 2018) incorporating negative integers. They may or may not 
use the number line as mathematically or culturally expected (e.g., Wessman-
Enzinger & Bofferding, 2014; Wessman-Enzinger, 2018b). We cannot expect learn-
ers to create number lines that necessarily align with our cultural conventions.

13.5.2  �A Contextual Perspective of Translation

Most research literature that discusses transformations of integers is specifically 
focused on translations (Marthe, 1979; Thompson & Dreyfus, 1988; Vergnaud, 
1982) in contextualized situations for addition and subtraction only. While some 
researchers have pointed to using translation as a way to think about integer addition 
and subtraction (e.g., Wheeler, Nesher, Bell, and Gattegno, 1981), other research-
ers, like Marthe (1979) and Vergnaud (1982), have provided problem types that 
support translation as well. Bell (1982), Marthe (1979), and Vergnaud (1982) pre-
sented integer addition and subtraction as beginning with a relative number or initial 
starting point, using a translation, and then ending at a relative number or final end-
ing point. Supporting this work, Bishop, Lamb, Philipp, Whitacre, and Schappelle 
(2014) shared that the children in their study solved integer problems with transla-
tion: “Starting point + Change = Ending Point.” Directed number can be conceptu-
alized as more than just “Starting point + Change = Ending Point,” but also can be 
used with distances or difference (Bofferding & Wessman-Enzinger, 2017; Selter, 
Prediger, Nührenbörger, & Hußmann, 2012; Whitacre, Schoen, Champagne, & 



Goddard, 2016). Thus, a variety of both contexts and problem types provide differ-
ent opportunities for conceptualizing the integers (Wessman-Enzinger & Mooney, 
2014; Wessman-Enzinger & Tobias, 2015).

Although many of the contexts used for whole numbers include discrete objects 
without movement (Carpenter, Fennema, Franke, Levi, & Empson, 2015), learners 
also engage in contexts with linear movement that supports translation as it begins 
to work with negative integers. We also know that different problem types support 
different ways of reasoning for whole number (Carpenter et al., 2015); this is likely 
the case for integers and translation as well.

For translation problem types, Marthe (1979) classified different problem types 
for additive structures for integers. The first category was SiTSf, where the initial 
state (Si) is translated (T) to the final state (Sf). Marthe then described that any of Si, 
T, or Sf could be the unknowns in a given problem. A second category Marthe 
described was T1T2T3. He described T1, T2, and T3 as “transformations” although 
they can also be described as linear translations. From this problem type, Marthe 
described that there are three subsequent problems that can be posed, where T1, T2, 
or T3 are unknowns, and T1, T2, or T3 have differing magnitudes and signs. Marthe 
provided contextual examples of each of these problems. For example, for the prob-
lem type T1T2T3 with T2 unknown, T1 and T3 with opposite signs, and |T1| <  |T3|, 
Marthe provided the example, “A car makes an initial journey of 20 km upstream. 
Then it makes a second journey. If it had made only one journey from its starting 
point to its destination, it would have made a journey of 25  km downstream. 
Describe the second journey” (p. 156). Marthe stated that this problem type is more 
challenging than STS.

Temperature is an example of a context for connecting integer operations to 
directed number, with both translation and relativity (Altiparmak & Özdoğan, 2010; 
Beatty, 2010; Bofferding & Farmer, 2018). Using the context of temperature, we 
modified the Marthe (1979) problem types to include a distinction between directed 
distance and undirected distance, with state-state-translation (SST) and state-state-
distance (SSD), respectively (Wessman-Enzinger & Tobias, 2015). When a problem 
is posed with two given relative numbers and the translation is unknown, this is 
classified as an SST problem. Whereas, when a problem with two numbers and a 
distance, without a clearly distinguished direction, this is considered to be an SSD 
problem (see Table 13.2 for the distinction between SST and SSD). Consider the 
SST problem type posed by a prospective teacher: “It was 12° outside Wednesday. 
It was 17 below zero degrees Thursday. How much had the temperature dropped 
since Wednesday?” Compare this to the SSD problem type posed by a prospective 
teacher: “One day in New York it is -14 degrees out. In Maine the same day it was 
-20°. What is the difference between the two states’ temperatures?” The distinguish-
ing feature of the SSD problem type from the SST is that no direction is provided in 
the problem. The problem types modified from Marthe (1979) are summarized in 
Table 13.2 below.

Similarly, in terms of the STS problem type, Vergnaud (1982) pointed out that 
the minus sign can illustrate a translation, or the minus sign can represent the inver-
sion of a directed translation, which is more challenging. The “minus sign” is used 



for finding differences; yet, the plus sign can also mean a difference between two 
directed numbers of different signs. Vergnaud, for example, provided “x + (+4) = -3, 
x = (-3) − (+4) = -(3 + 4)” (p. 73) and stated, “My view is that equalities and equa-
tions do not fit equally well all situations met and handled by learners, but only a 
few of them” (p. 74). In terms of using translation, Vergnaud made an important 
distinction that thinking about moving backwards two units from 1 may be repre-
sented by both the expression 1 − 2 or 1 + -2; however, these expressions may not
conceptually represent this situation equally for the student.

As Vergnaud highlights, I have similarly found in my own work that children’s 
thinking about contextual problems with integers, and the number sentences they 
write, do not always match the context (Wessman-Enzinger, in press). Three Grade 
5 children (Alice, Jace, Kim) solved the following problem:

The warmest recorded temperature of the North Pole is about 5° Celsius. The warmest 
recorded temperature of the South Pole is about -9° Celsius. Which place has the warmest 
recorded temperature? And, how much warmer is it?

Alice, Jace, and Kim each wrote different number sentences: 5  −  -9  =  14,
-9 + 5 = 4, and 5 + 9 = 14, respectively (Fig. 13.4).

How learners conceptualize this problem does not necessarily coordinate with 
the problem type, but it might. Here we see that both Alice and Kim obtained the 
solution of 14, yet Kim did not even use subtraction (i.e., 9 + 5 = 14). For Kim, 
5 − -9 = 14 did not conceptually match this context; she stated that she did not agree
that subtraction should be involved when one is adding distances. Similarly, Alice 
did not agree with 9 + 5 = 14 initially because she stated that +9 is not in the context 
of the problem; -9 is. Alice’s conceptualization matched the problem type (SST); 
but, Kim’s conceptualization of the problem did not. In this vein, although various 
problem types for integers may provide insight into how learners solve problems, 
they do not necessarily solve the problems with translations as we expect.

Thompson and Dreyfus (1988) provided a rich instructional context in a micro-
world, called INTEGERS, for two Grade 6 students in order to investigate concep-
tions about integers. Within the microworld, the Grade 6 students solved contextual 
problems that were often of the problem type TTT, even illustrating directed num-
bers as linear vectors on a horizontal number line. For example, they constructed 
two different translations of a turtle and determined the net translation of the turtle 
with the vectors. Thompson and Dreyfus conducted the teaching experiment using 

Table 13.2  Relativity and translation problem types from Wessman-Enzinger and Tobias (2015)

Problem 
type Description

STS A problem posed with a relative number and a translation, with the second relative 
number as the unknown

TTT A problem posed with two given translations and the third translation is unknown
SST A problem posed with two given relative numbers and the translation is unknown
SSD A problem posed with two relative numbers and a distance, without specified 

direction



Fig. 13.4  Alice, Jace, and Kim’s written work for the North Pole Problem



these net translations for 6 weeks. Similar to Thompson and Dreyfus (1988), but 
using a person instead of turtle, Liebeck (1990) included a number line with a per-
son that moved along this number line. Liebeck’s activity differed from Thompson 
and Dreyfus as it did not incorporate visualized directed vectors. Liebeck’s activity 
also supported a different problem type—STS. Students in Liebeck’s study started 
at different relative points, such as 2 or -5, translated the person from that point, and 
then found the ending point. Addition and subtraction of integers was described as 
“when we add, we move forwards” and “when we take away, we move backwards,” 
respectively (p. 233). Liebeck provided a table for students to record the starting 
place, moving forwards or backwards, the ending place, and then the “answer” or 
the number sentence. This use of the person moving on the number line related to 
the STS problem. Both the contexts from Thompson and Dreyfus (1988) and from 
Liebeck (1990) used a conventional number line (e.g., partitioned, negatives on the 
left) and interpreted addition and subtraction unidirectionally (i.e., subtraction 
moves left on a conventional horizontal number line).

The contexts of Thompson and Dreyfus (1988) and Liebeck (1990) facilitated 
students’ thinking about integers and translation, and there are many other contexts 
that may also support thinking about integers and translation. Some of these contexts 
include: a timeline with BC and AD dates (Gallardo, 2003); temperature increasing 
and decreasing (Wessman-Enzinger & Tobias, 2015); traveling up and down a river 
(Marthe, 1979); riding in an elevator (Iannone & Cockburn, 2006; Larsen & Saldanha, 
2006); and balloons moving up and down (Janvier, 1985; Reeves & Webb, 2004). 
Despite all of these contexts supporting linear movement and directed number, some 
of the contexts support different types of conceptualizations of translation. The con-
text used by Thompson and Dreyfus (1988) supports net translations (i.e., TTT); the 
context used by Liebeck (1990) and grounding metaphors with movement support 
identifying a relative number and translating to another relative number (i.e., STS); 
and, other contexts, like temperature (e.g., Wessman-Enzinger, in press), support 
using directed and undirected distance (e.g., SST, SSD). While there is often a quest 
for a “perfect” instructional model or a meaningful context for integers, these exam-
ples illustrate how working within a variety of contexts and problem types provides 
different opportunities to think about and work with integers as directed number, all 
of which are crucial for understanding integers.

Selter et al. (2012) differentiated between the take-away and difference models 
of subtraction. These models are related to both the problem types discussed above 
and to conceptualizations of translation. SST and SSD problem types are directly 
related to the difference model of subtraction, with one representing a directed dis-
tance and the other an undirected distance, and STS problem types seem related to 
the take-away model, with the change or “take-away” as a directed movement. 
Although STS, SST, and SSD are presented above as problem types in contexts, 
these problem types also point to ways that learners may conceptualize translations 
with integer addition and subtraction. Interpreting integer subtraction often requires 
a transition from take-away models of subtraction to distance models of subtraction 
(Bofferding & Wessman-Enzinger, 2017; Whitacre, Schoen, Champagne, & 
Goddard, 2016). Yet, our top-down instructional models for integer addition and 



subtraction do not explicitly support these transitions. Learners are capable of 
inventing their own constructions, using their own conceptions of translation to cre-
ate ways to deal with integer subtraction and transition. Learners’ ways of reasoning 
can be supported, in alignment to structures we understand (e.g., distance models, 
SST, SSD), without top-down integer instructional models (e.g., walk backwards, 
turn around, on a number line).

13.5.3  �Illustration of Translation and Directed Quantities: 
The Case of Kim

The following example illustrates a student construction that differs substantially 
from conventional integer instructional models that support translation and directed 
quantities. Figure 13.5 illustrates a drawing of an empty number line from a Grade 
5 student, Kim, at the end of a 12-week teaching experiment. Kim’s number line 
highlights how she used directed quantity in unconventional ways. It is important to 
note that in this teaching experiment I did not provide any instructional models 
(e.g., chips models, number line models) to the students, and provided students only 
open number sentences or contexts without illustrations. The following excerpt of 
transcript is from when Kim solved -1 − □ = 8 shown in Fig. 13.5.

Negative one minus something would equal eight. So if I did nine, it would be negative ten. 
So I turned it into a negative nine and so, it’s sort of like this (starts drawing a number line). 
Here’s a negative one (marks negative one on the number line), here’s zero (marks zero on 
the number line). That’s really far. Then right here is eight (marks eights on the number 
line). Then, nine, that’s, they’re both negative so you’re going to subtract regularly. So like 
five minus three, you are going to subtract regularly with positive numbers, but it’s negative 
numbers this time. When you do subtract it nine is a lot greater than the starting off number. 
So, it’s going to hit zero when it’s lost one (mark number line). And, then there’s eight 
remaining over and then you can just like go into the positive though (waves hand to the 
right). You know, keep going with your remaining eight and get eight.

Kim constructed empty number lines like the one in Fig. 13.5, where she used 
STS as a strategy for integer subtraction: she started at a relative number and trans-
lated right to a second relative number. Integer subtraction like this conventionally 
may be thought of as the distance between two states, where -1 − □ = 8 would be
conceptualized as the distance between -1 and -9. Instead, Kim uniquely used 
motion and a directed number starting at -1 and translating “-9” units to 8. Kim 
stated, “it’s going to hit zero when it’s lost one,” decomposing the -9 units to -1 and 

Fig. 13.5  Kim’s unique 
use of translation and 
directed quantity with 
integer subtraction



-8 and using negative distance or directed number. Kim created a strategy where 
subtraction moved right (see Fig.  13.5), when traditionally subtraction involves 
moving left on this type of conventional number line (i.e., negative numbers on the 
left and positive numbers on the right). Comparing this to whole number reasoning, 
where addition moves right, marks this type of reasoning a powerful construction. 
Furthermore, she conceptualized distance as negative (see the “-1” written above 
the empty number line). Comparing the use of negative distance to whole number 
reasoning, where distance is always positive and not directional, marks another area 
of a distinct invention.

Kim’s empty number line drawing and use of directed quantity highlight the 
uniqueness of her constructions, relative to typical instructional models for integer 
addition and subtraction. Kim’s example provides evidence of a sophisticated and 
unique mathematical construction from a Grade 5 student. Her construction does 
not align well with current integer instructional models, yet does draw on the ideas 
of motion.

Using movement on the empty number line, Kim used her translations with addi-
tion and subtraction flexibly. That is, addition moved right on her empty number 
line (with positive directed distance) and subtraction also moved right on her empty 
number line (with negative directed distance). Comparing this to reasoning with 
whole number, where all directed distance is positive—addition moves right and 
subtraction moves left on a number line like hers—is novel. Furthermore, many 
instructional models for integer addition and subtraction maintain this type of whole 
number reasoning with the integer models (i.e., where addition moves right only 
and subtraction moves left only, but uses integer operations). Thus, Kim’s construc-
tion and flexibility of using both addition and subtraction for moving right on her 
number line is powerful. Kim’s construction offers a perspective on integer addition 
and subtraction where distance is relative (distance can be positive or negative) and 
movement is relative (subtraction can move right or left). Kim’s invention high-
lights a way of thinking about integer subtraction absent from current integer 
instructional models and even subtraction models of take-away and distance.

13.5.4  �Connecting Themes of Translation Across Mathematics 
Education and Developmental Psychology

Although the use of integers with translation is emphasized in both mathematics 
education and developmental psychology (e.g., use of movement on number line), 
the use of translation that is represented, both explicitly and implicitly, may be dif-
ferent from learners’ constructions. As illustrated above, Kim used translation in an 
unconventional way. Her interpretation of subtraction with movement to the right 
marks a unique construction. She uniquely “lost” negative distance. What are other 
ways that children may create and construct translation? How are these unique con-
structions related to conceptions of relativity? For instance, if distance is interpreted 



as positive, then subtraction may be interpreted as a translation to the left (on a 
conventional number line). And, if distance is interpreted negative, subtraction may 
be interpreted as movement to the right (or left). Learning more about the depth of 
learners’ constructions of translation and how this is related to conceptions of rela-
tivity has implications for embodied cognition (e.g, Lakoff & Núñez, 2000), mental 
models (Bofferding, 2014), and integer instructional models (e.g., Saxe et al., 2013), 
as it impacts the ways we leverage learning.

13.6  �Concluding Remarks

The examples from students discussed here are intended to highlight and extend key 
themes in the literature: children are capable of creating robust and sophisticated 
constructions of translation and relativity in relation to integers as directed quanti-
ties, but we need to explore these constructions more in depth. Additionally, the 
examples are intended to challenge typical notions of what instructional models for 
integers entail. We must abandon the search for the holy grail of integer research—
the illusive, infallible integer instructional model. Instead, let us take up pursuit of 
learners’ robust and sophisticated constructions of integer operations.

Rather than using integer instructional models from top-down perspectives 
(instructional models created by teachers and researchers), we can draw on learners’ 
constructions as the instructional models. As we look more towards learners’ con-
structions, we should focus on overlooked ideas of relativity, paired with transla-
tion, for insight into directed quantity. Children have produced mathematical ideas 
(such as relativity) that have been overlooked in our own integer work. Yet, the ideas 
that the children have constructed are essential to directed quantity. As we learn 
more about conceptualizations of translation and relativity in relation to directed 
quantity, we can investigate how to leverage these student-constructed ideas to other 
advanced mathematics.
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