2011

Transcription Factor Regulation of ERK and Estrogen in MCF-7 Cells

John M. Schmitt
George Fox University, jschmitt@georgefox.edu

Jessica N. Magill
George Fox University

Follow this and additional works at: http://digitalcommons.georgefox.edu/bio_fac

Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Biology Commons

Recommended Citation
Schmitt, John M. and Magill, Jessica N., "Transcription Factor Regulation of ERK and Estrogen in MCF-7 Cells" (2011). Faculty Publications - Department of Biology and Chemistry. Paper 81.
http://digitalcommons.georgefox.edu/bio_fac/81

This Article is brought to you for free and open access by the Department of Biology and Chemistry at Digital Commons @ George Fox University. It has been accepted for inclusion in Faculty Publications - Department of Biology and Chemistry by an authorized administrator of Digital Commons @ George Fox University. For more information, please contact arolfe@georgefox.edu.
Transcription Factor Regulation by ERK and Estrogen in MCF-7 Cells

Jessica N. Magill and John M. Schmitt

Biology and Chemistry, George Fox University, Newberg, OR

Abstract

ERK is activated by increased intracellular calcium downstream of the hormone estrogen (E2). E2 activates ERK via the CaM Kinases, specifically CaM KK and CaM Ki in MCF-7 cells. ERK may control cell growth and proliferation through Elk-1, Rsk, SRF, CREB, and numerous other molecules and nuclear targets. Vitamin D, a hormone, has proven to be an effective antagonist of ERK and MCF-7 breast cancer cell growth. Our goal was to evaluate if the E2 pathway working through CaM KK and ERK regulated the transcription factors Elk-1, CREB, and SRF. We also examined the ability of vitamin D to antagonize ERK activation of its downstream targets. Interestingly, E2 stimulation of MCF-7 cells activated both ERK and Elk-1 an effect that was blocked by inhibiting both CaM KK and ERK. E2 treatment of MCF-7 cells also triggered a significant increase in SRF and CREB phosphorylation in a CaM KK- and ERK-dependent manner. Dimerization of transcription factors may enhance DNA binding and gene expression. E2 stimulation of MCF-7 cells promoted the formation of a molecular complex between endogenous Elk-1 and SRF. Finally, E2 triggered a prolonged increased in ERK and Elk-1 phosphorylation, both of which were blocked by vitamin D treatment. Taken together our data demonstrates several transcriptional targets for E2 working through CaM KK and their inhibition by vitamin D signaling.