Document Type
Article
Publication Date
2008
Publication Title
Combustion Science and Technology
Abstract
The spatio-temporal temperature and species concentration distributions associated with low and intermediate temperature hydrocarbon oxidation are computed using a global thermo kinetic scheme augmented with diffusive transport. The scheme used for the computations was proposed by Wang and Mou and is extended to include diffusion of species and heat. The conservation equations for species and energy are then derived and solved for a one-dimensional and an axisymmetric, spherical domain for temperatures ranging from 540 to 660 Kat subatmospheric pressures. The predictions are then used to develop ignition diagrams for different Lewis ( Le) numbers. Increasing Le is found to promote oscillatory cool flames and two-stage ignition in the one-dimensional model, while the ratio of the mass diffusivity of the parent fuel to that associated with the autocatalytic chain carrier has a negligible effect on the structure of the ignition diagrams. In the spherical model, oscillatory cool flames and two-stage ignition were also predicted albeit at lower values of the Le.
Keywords
Autoignition; Cool flames; Microgravity; Thermokinetic oscillations; Wang-Mou model
Volume
180
Issue
1
First Page
206
Last Page
218
Recommended Citation
Pearlman, Howard and Foster, Michael R., "The Role of Diffusive Transport on Low and Intermediate Temperature Hydrocarbon Oxidation: Numerical Simulations using the Wang-Mou Mechanism" (2008). Faculty Publications - Biomedical, Mechanical, and Civil Engineering. 27.
https://digitalcommons.georgefox.edu/mece_fac/27
Comments
Originally published in Combustion Science and Technology, 180(1):206–218.
http://www.tandfonline.com/loi/gcst20?open=180&repitition=0#vol_180