Document Type
Article
Publication Date
2013
Publication Title
Journal of Guidance, Control, and Dynamics
Abstract
Terminal guidance of autonomous parafoils is a difficult problem in which wind uncertainty and system underactuation are major challenges. Existing strategies almost exclusively use impact error as the criterion for optimality. Practical airdrop systems, however, must also include other criteria that maybe even more important than impact error for some missions, such as ground speed at impact or constraints imposed by drop zones with restrictions on flight patterns. Furthermore, existing guidance schemes determine terminal trajectories using deterministic wind information and may result in a solution that works in ideal wind but may be sensitive to variations. The work described here develops a guidance strategy that uses massively parallel Monte Carlo simulation performed on a graphics processing unit to rank candidate trajectories in terms of robustness to wind uncertainty. The result is robust guidance, as opposed to optimal guidance. Through simulation results, the proposed path planning scheme proves more robust in realistic dynamic wind environments compared with previous optimal trajectory planners that assume perfect knowledge of a constant wind.
Volume
36
Issue
5
First Page
1336
Last Page
1345
Recommended Citation
Rogers, Jonathan and Slegers, Nathan, "Robust Parafoil Terminal Guidance Using Massively Parallel Processing" (2013). Faculty Publications - Biomedical, Mechanical, and Civil Engineering. 1.
https://digitalcommons.georgefox.edu/mece_fac/1
Comments
Originally published in the Journal of Guidance Control and Dynamics, September 2013, Vol. 36, No. 5, pp. 1336-1345
http://arc.aiaa.org/loi/jgcd