Document Type

Article

Publication Date

2013

Publication Title

Journal of Guidance, Control, and Dynamics

Abstract

Terminal guidance of autonomous parafoils is a difficult problem in which wind uncertainty and system underactuation are major challenges. Existing strategies almost exclusively use impact error as the criterion for optimality. Practical airdrop systems, however, must also include other criteria that maybe even more important than impact error for some missions, such as ground speed at impact or constraints imposed by drop zones with restrictions on flight patterns. Furthermore, existing guidance schemes determine terminal trajectories using deterministic wind information and may result in a solution that works in ideal wind but may be sensitive to variations. The work described here develops a guidance strategy that uses massively parallel Monte Carlo simulation performed on a graphics processing unit to rank candidate trajectories in terms of robustness to wind uncertainty. The result is robust guidance, as opposed to optimal guidance. Through simulation results, the proposed path planning scheme proves more robust in realistic dynamic wind environments compared with previous optimal trajectory planners that assume perfect knowledge of a constant wind.

Volume

36

Issue

5

First Page

1336

Last Page

1345

Comments

Originally published in the Journal of Guidance Control and Dynamics, September 2013, Vol. 36, No. 5, pp. 1336-1345

http://arc.aiaa.org/loi/jgcd

Share

COinS