Document Type
Article
Publication Date
2012
Publication Title
ActaHistochemic
Abstract
Collagen fibers and fibrils that comprise tendons and ligaments are disrupted or damaged during injury. Fibrillogenesis during healing produces a matrix that is initially quite disorganized, but remodels over time to resemble, but not replicate, the original roughly parallel microstructure. Quantification of these changes is traditionally a laborious and subjective task. In this work we applied two automated techniques, fast Fourier transformation (FFT) and fractal dimension analysis (FA) to quantify the organization of collagen fibers or fibrils. Using multi-photon images of collagen fibers obtained from rat ligament we showed that for healing ligaments, FA differentiates more clearly between the different time-points during healing. Using scanning electron microscopy images of overstretched porcine flexor tendon, we showed that combining FFT and FA measures distinguishes the damaged and undamaged groups more clearly than either method separately.
Keywords
Fractal, Fourier transform, FFT, Collagen, Tendon, Ligament, Rat, Pig
Volume
114
Issue
2
First Page
140
Last Page
144
DOI
https://doi.org/10.1016/j.acthis.2011.03.010
ISSN
0065-1281
Recommended Citation
Frisch, Kayt E.; Duenwald-Kuehl, Sarah E.; Kobayashi, Hirohito; Chamberlain, Connie S.; Lakes, Roderic S.; and Vanderby, Ray Jr., "Quantification of Collagen Organization Using Fractal Dimensions and Fourier Transforms" (2012). Faculty Publications - Biomedical, Mechanical, and Civil Engineering. 84.
https://digitalcommons.georgefox.edu/mece_fac/84
Included in
Biomedical Engineering and Bioengineering Commons, Musculoskeletal System Commons, Sports Medicine Commons, Sports Sciences Commons
Comments
Originally published in Acta Histochemica, Volume 114, Issue 2, February 2012, Pages 140-144