Document Type

Article

Publication Date

5-2012

Abstract

STUDY DESIGN: Controlled laboratory study using a cross-sectional design.

OBJECTIVES: To compare lower extremity force applications during a sit-to-stand (STS) task with and without upper extremity assistance in older individuals post–hip fracture to those of age matched controls.

BACKGROUND: A recent study documented the dependence on upper extremity assistance and the uninvolved lower limb during an STS task in individuals post–hip fracture. This study extends this work by examining the effect of upper extremity assistance on symmetry of lower extremity force applications.

METHODS: Twenty-eight community-dwelling elderly subjects, 14 who had recovered from a hip fracture and 14 controls, participated in the study. All participants were independent ambulators. Four force plates were used to determine lower extremity force applications during an STS task with and without upper extremity assistance. The summed vertical ground reaction forces (vGRFs) of both limbs were used to determine STS phases (preparation/rising). The lower extremity force applications were assessed statistically using analysis of variance models.

RESULTS: During the preparation phase, sideto-side symmetry of the rate of force development was significantly lower for the hip fracture group for both STS tasks (P<.001). During the rising phase, the vGRF impulse of the involved limb was significantly lower for the hip fracture group for both STS tasks (P = .045). The vGRF impulse for the uninvolved limb was significantly increased when participants with hip fracture did not use upper extremity assistance compared to elderly controls (P = .002). This resulted in a significantly lower vGRF symmetry for the hip fracture group during both STS tasks (P<.001).

CONCLUSION: Participants with hip fracture who were discharged from rehabilitative care demonstrated decreased side-to-side symmetry of lower extremity loading during an STS task, irrespective of whether upper extremity assistance was provided. These findings suggest that learned motor control strategies may influence movement patterns post–hip fracture.

Share

COinS