Document Type
Article
Publication Date
2016
Abstract
Distribution shifts of tree species are likely to be highly dependent upon population performance at distribution edges. Understanding the drivers of aspects of performance, such as growth, at distribution edges is thus crucial to accurately predicting responses of tree species to climate change. Here, we use a Bayesian model and sensitivity analysis to partition the effects of climate and crowding, as a metric of competition, on radial growth of three dominant conifer species along montane ecotones in the Rocky Mountains. These ecotones represent upper and lower distribution edges of two species, and span the distribution interior of the third species. Our results indicate a greater influence of climate (i.e., temperature and precipitation) than crowding on radial growth. Competition importance appears to increase towards regions of more favorable growing conditions, and precise responses to crowding and climate vary across species. Overall, our results suggest that climate will likely be the most important determinant of changes in tree growth at distribution edges of these montane conifers in the future.
Recommended Citation
Originally published in Oecologia, 2016, 182(1), 13-25. Posted with permission. See it here: https://www.ncbi.nlm.nih.gov/pubmed/26873606