Document Type


Publication Date



Domestic chickens may live in environments which restrict wing muscle usage. Notably, reduced wing activity and accompanying muscle weakness are hypothesized risk factors for keel bone fractures and deviations. We used radio-frequency identification (RFID) to measure duration spent at elevated resources (feeders, nest-boxes), ultrasonography to measure muscle thickness (breast and lower leg) changes, radiography and palpation to determine fractures and deviations, respectively, following no, partial (one-sided wing sling) and full (cage) immobilization in white- and brown-feathered birds. We hypothesized partially immobilized hens would reduce elevated resource usage and that both immobilization groups would show decreased pectoralis thickness (disuse) and increased prevalence of fractures and deviations. Elevated nest-box usage was 42% lower following five weeks of partial immobilization for brown-feathered hens but no change in resource usage in white-feathered birds was observed. Fully immobilized, white-feathered hens showed a 17% reduction in pectoralis thickness, while the brown-feathered counterparts showed no change. Lastly, fractures and deviations were not affected in either strain or form of wing immobilization; however, overall low numbers of birds presented with these issues. Altogether, this study shows a profound difference between white- and brown-feathered hens in response to wing immobilization and associated muscle physiology.


Originally published in Garant RC, Tobalske BW, Ben Sassi N, van Staaveren N, Tulpan D, Widowski T, Powers DR, Harlander-Matauschek A. Does wing use and disuse cause behavioural and musculoskeletal changes in domestic fowl (Gallus gallus domesticus)? R Soc Open Sci. 2023 Jan 25;10(1):220809. doi: 10.1098/rsos.220809.

Included in

Biology Commons